Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning
Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the tr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-11, Vol.25 (11), p.17147-17159 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17159 |
---|---|
container_issue | 11 |
container_start_page | 17147 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Chen, Peng Wang, Ziyan Zhou, Bin Yu, Guizhen |
description | Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the trajectories of connected vehicles (CVs) can effectively provide information on their origin and destination. To this end, this paper presents a framework of an autoencoder network utilizing feature transfer to estimate urban dynamic OD based on the characteristics of two data sources. Specifically, a generative adversarial network is introduced to learn high-dimensional feature that is domain-invariant in two data domains. In addition, a pre-training fine-tuning approach is proposed to transfer knowledge pretrained from CV data to the limited AVI observation for OD imputation. Finally, the model was subjected to a real-world road network test. The results showed that for all OD flows the relative error was 11.23 vehicles/30 minutes, which outperformed baseline models, including popular neural networks and existing estimation models for multi-source data fusion. Furthermore, the model's robustness to external factors, such as observation conditions and data quality, was examined. The results demonstrated that the model consistently delivers satisfactory estimation performance across a diverse range of conditions. |
doi_str_mv | 10.1109/TITS.2024.3421233 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3421233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10592834</ieee_id><sourcerecordid>10_1109_TITS_2024_3421233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-24969af5934ef6bf8602ac476e212dae7a1be61189026d85a4f9eb72942643b63</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhYMoWKsPIHixL5Cayd9uLrW1tVCo4PZ6ye5OSqRNS7JF-vbu0l54NWd-zmH4CHkGNgFg5rVclt8TzricCMmBC3FDRqBUQRkDfTtoLqlhit2Th5R--qlUACPyNTsHu_dNto5-6wOdYep8sJ0_hGy-O_xmy_3x1F36TfJhm83RdqeI9N0mbLMy2pAcxmyFNoZ-_0junN0lfLrWMdnMP8rpJ12tF8vp24o2IIuOcmm0sU4ZIdHp2hWacdvIXGP_fWsxt1CjBigM47otlJXOYJ1zI7mWotZiTOCS28RDShFddYx-b-O5AlYNSKoBSTUgqa5Ies_LxeMR8d-9MrwQUvwBOZtdXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Peng ; Wang, Ziyan ; Zhou, Bin ; Yu, Guizhen</creator><creatorcontrib>Chen, Peng ; Wang, Ziyan ; Zhou, Bin ; Yu, Guizhen</creatorcontrib><description>Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the trajectories of connected vehicles (CVs) can effectively provide information on their origin and destination. To this end, this paper presents a framework of an autoencoder network utilizing feature transfer to estimate urban dynamic OD based on the characteristics of two data sources. Specifically, a generative adversarial network is introduced to learn high-dimensional feature that is domain-invariant in two data domains. In addition, a pre-training fine-tuning approach is proposed to transfer knowledge pretrained from CV data to the limited AVI observation for OD imputation. Finally, the model was subjected to a real-world road network test. The results showed that for all OD flows the relative error was 11.23 vehicles/30 minutes, which outperformed baseline models, including popular neural networks and existing estimation models for multi-source data fusion. Furthermore, the model's robustness to external factors, such as observation conditions and data quality, was examined. The results demonstrated that the model consistently delivers satisfactory estimation performance across a diverse range of conditions.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3421233</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>data fusion ; Data models ; dynamic OD estimation ; Estimation ; Feature extraction ; missing data ; Noise reduction ; Roads ; Trajectory ; transfer learning ; Urban traffic ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17147-17159</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-24969af5934ef6bf8602ac476e212dae7a1be61189026d85a4f9eb72942643b63</cites><orcidid>0000-0002-1141-5557 ; 0000-0002-8076-8989 ; 0009-0009-7170-0729 ; 0000-0001-8374-7422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10592834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10592834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Wang, Ziyan</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><creatorcontrib>Yu, Guizhen</creatorcontrib><title>Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the trajectories of connected vehicles (CVs) can effectively provide information on their origin and destination. To this end, this paper presents a framework of an autoencoder network utilizing feature transfer to estimate urban dynamic OD based on the characteristics of two data sources. Specifically, a generative adversarial network is introduced to learn high-dimensional feature that is domain-invariant in two data domains. In addition, a pre-training fine-tuning approach is proposed to transfer knowledge pretrained from CV data to the limited AVI observation for OD imputation. Finally, the model was subjected to a real-world road network test. The results showed that for all OD flows the relative error was 11.23 vehicles/30 minutes, which outperformed baseline models, including popular neural networks and existing estimation models for multi-source data fusion. Furthermore, the model's robustness to external factors, such as observation conditions and data quality, was examined. The results demonstrated that the model consistently delivers satisfactory estimation performance across a diverse range of conditions.</description><subject>data fusion</subject><subject>Data models</subject><subject>dynamic OD estimation</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>missing data</subject><subject>Noise reduction</subject><subject>Roads</subject><subject>Trajectory</subject><subject>transfer learning</subject><subject>Urban traffic</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KAzEQhYMoWKsPIHixL5Cayd9uLrW1tVCo4PZ6ye5OSqRNS7JF-vbu0l54NWd-zmH4CHkGNgFg5rVclt8TzricCMmBC3FDRqBUQRkDfTtoLqlhit2Th5R--qlUACPyNTsHu_dNto5-6wOdYep8sJ0_hGy-O_xmy_3x1F36TfJhm83RdqeI9N0mbLMy2pAcxmyFNoZ-_0junN0lfLrWMdnMP8rpJ12tF8vp24o2IIuOcmm0sU4ZIdHp2hWacdvIXGP_fWsxt1CjBigM47otlJXOYJ1zI7mWotZiTOCS28RDShFddYx-b-O5AlYNSKoBSTUgqa5Ies_LxeMR8d-9MrwQUvwBOZtdXQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Chen, Peng</creator><creator>Wang, Ziyan</creator><creator>Zhou, Bin</creator><creator>Yu, Guizhen</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1141-5557</orcidid><orcidid>https://orcid.org/0000-0002-8076-8989</orcidid><orcidid>https://orcid.org/0009-0009-7170-0729</orcidid><orcidid>https://orcid.org/0000-0001-8374-7422</orcidid></search><sort><creationdate>202411</creationdate><title>Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning</title><author>Chen, Peng ; Wang, Ziyan ; Zhou, Bin ; Yu, Guizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-24969af5934ef6bf8602ac476e212dae7a1be61189026d85a4f9eb72942643b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>data fusion</topic><topic>Data models</topic><topic>dynamic OD estimation</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>missing data</topic><topic>Noise reduction</topic><topic>Roads</topic><topic>Trajectory</topic><topic>transfer learning</topic><topic>Urban traffic</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Wang, Ziyan</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><creatorcontrib>Yu, Guizhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Peng</au><au>Wang, Ziyan</au><au>Zhou, Bin</au><au>Yu, Guizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>17147</spage><epage>17159</epage><pages>17147-17159</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the trajectories of connected vehicles (CVs) can effectively provide information on their origin and destination. To this end, this paper presents a framework of an autoencoder network utilizing feature transfer to estimate urban dynamic OD based on the characteristics of two data sources. Specifically, a generative adversarial network is introduced to learn high-dimensional feature that is domain-invariant in two data domains. In addition, a pre-training fine-tuning approach is proposed to transfer knowledge pretrained from CV data to the limited AVI observation for OD imputation. Finally, the model was subjected to a real-world road network test. The results showed that for all OD flows the relative error was 11.23 vehicles/30 minutes, which outperformed baseline models, including popular neural networks and existing estimation models for multi-source data fusion. Furthermore, the model's robustness to external factors, such as observation conditions and data quality, was examined. The results demonstrated that the model consistently delivers satisfactory estimation performance across a diverse range of conditions.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3421233</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1141-5557</orcidid><orcidid>https://orcid.org/0000-0002-8076-8989</orcidid><orcidid>https://orcid.org/0009-0009-7170-0729</orcidid><orcidid>https://orcid.org/0000-0001-8374-7422</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17147-17159 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2024_3421233 |
source | IEEE Electronic Library (IEL) |
subjects | data fusion Data models dynamic OD estimation Estimation Feature extraction missing data Noise reduction Roads Trajectory transfer learning Urban traffic Vehicle dynamics |
title | Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Origin-Destination%20Flow%20Imputation%20Using%20Feature-Based%20Transfer%20Learning&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chen,%20Peng&rft.date=2024-11&rft.volume=25&rft.issue=11&rft.spage=17147&rft.epage=17159&rft.pages=17147-17159&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3421233&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3421233%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10592834&rfr_iscdi=true |