Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning

Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-11, Vol.25 (11), p.17147-17159
Hauptverfasser: Chen, Peng, Wang, Ziyan, Zhou, Bin, Yu, Guizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17159
container_issue 11
container_start_page 17147
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Chen, Peng
Wang, Ziyan
Zhou, Bin
Yu, Guizhen
description Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the trajectories of connected vehicles (CVs) can effectively provide information on their origin and destination. To this end, this paper presents a framework of an autoencoder network utilizing feature transfer to estimate urban dynamic OD based on the characteristics of two data sources. Specifically, a generative adversarial network is introduced to learn high-dimensional feature that is domain-invariant in two data domains. In addition, a pre-training fine-tuning approach is proposed to transfer knowledge pretrained from CV data to the limited AVI observation for OD imputation. Finally, the model was subjected to a real-world road network test. The results showed that for all OD flows the relative error was 11.23 vehicles/30 minutes, which outperformed baseline models, including popular neural networks and existing estimation models for multi-source data fusion. Furthermore, the model's robustness to external factors, such as observation conditions and data quality, was examined. The results demonstrated that the model consistently delivers satisfactory estimation performance across a diverse range of conditions.
doi_str_mv 10.1109/TITS.2024.3421233
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3421233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10592834</ieee_id><sourcerecordid>10_1109_TITS_2024_3421233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-24969af5934ef6bf8602ac476e212dae7a1be61189026d85a4f9eb72942643b63</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhYMoWKsPIHixL5Cayd9uLrW1tVCo4PZ6ye5OSqRNS7JF-vbu0l54NWd-zmH4CHkGNgFg5rVclt8TzricCMmBC3FDRqBUQRkDfTtoLqlhit2Th5R--qlUACPyNTsHu_dNto5-6wOdYep8sJ0_hGy-O_xmy_3x1F36TfJhm83RdqeI9N0mbLMy2pAcxmyFNoZ-_0junN0lfLrWMdnMP8rpJ12tF8vp24o2IIuOcmm0sU4ZIdHp2hWacdvIXGP_fWsxt1CjBigM47otlJXOYJ1zI7mWotZiTOCS28RDShFddYx-b-O5AlYNSKoBSTUgqa5Ies_LxeMR8d-9MrwQUvwBOZtdXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Peng ; Wang, Ziyan ; Zhou, Bin ; Yu, Guizhen</creator><creatorcontrib>Chen, Peng ; Wang, Ziyan ; Zhou, Bin ; Yu, Guizhen</creatorcontrib><description>Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the trajectories of connected vehicles (CVs) can effectively provide information on their origin and destination. To this end, this paper presents a framework of an autoencoder network utilizing feature transfer to estimate urban dynamic OD based on the characteristics of two data sources. Specifically, a generative adversarial network is introduced to learn high-dimensional feature that is domain-invariant in two data domains. In addition, a pre-training fine-tuning approach is proposed to transfer knowledge pretrained from CV data to the limited AVI observation for OD imputation. Finally, the model was subjected to a real-world road network test. The results showed that for all OD flows the relative error was 11.23 vehicles/30 minutes, which outperformed baseline models, including popular neural networks and existing estimation models for multi-source data fusion. Furthermore, the model's robustness to external factors, such as observation conditions and data quality, was examined. The results demonstrated that the model consistently delivers satisfactory estimation performance across a diverse range of conditions.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3421233</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>data fusion ; Data models ; dynamic OD estimation ; Estimation ; Feature extraction ; missing data ; Noise reduction ; Roads ; Trajectory ; transfer learning ; Urban traffic ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17147-17159</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-24969af5934ef6bf8602ac476e212dae7a1be61189026d85a4f9eb72942643b63</cites><orcidid>0000-0002-1141-5557 ; 0000-0002-8076-8989 ; 0009-0009-7170-0729 ; 0000-0001-8374-7422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10592834$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10592834$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Wang, Ziyan</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><creatorcontrib>Yu, Guizhen</creatorcontrib><title>Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the trajectories of connected vehicles (CVs) can effectively provide information on their origin and destination. To this end, this paper presents a framework of an autoencoder network utilizing feature transfer to estimate urban dynamic OD based on the characteristics of two data sources. Specifically, a generative adversarial network is introduced to learn high-dimensional feature that is domain-invariant in two data domains. In addition, a pre-training fine-tuning approach is proposed to transfer knowledge pretrained from CV data to the limited AVI observation for OD imputation. Finally, the model was subjected to a real-world road network test. The results showed that for all OD flows the relative error was 11.23 vehicles/30 minutes, which outperformed baseline models, including popular neural networks and existing estimation models for multi-source data fusion. Furthermore, the model's robustness to external factors, such as observation conditions and data quality, was examined. The results demonstrated that the model consistently delivers satisfactory estimation performance across a diverse range of conditions.</description><subject>data fusion</subject><subject>Data models</subject><subject>dynamic OD estimation</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>missing data</subject><subject>Noise reduction</subject><subject>Roads</subject><subject>Trajectory</subject><subject>transfer learning</subject><subject>Urban traffic</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KAzEQhYMoWKsPIHixL5Cayd9uLrW1tVCo4PZ6ye5OSqRNS7JF-vbu0l54NWd-zmH4CHkGNgFg5rVclt8TzricCMmBC3FDRqBUQRkDfTtoLqlhit2Th5R--qlUACPyNTsHu_dNto5-6wOdYep8sJ0_hGy-O_xmy_3x1F36TfJhm83RdqeI9N0mbLMy2pAcxmyFNoZ-_0junN0lfLrWMdnMP8rpJ12tF8vp24o2IIuOcmm0sU4ZIdHp2hWacdvIXGP_fWsxt1CjBigM47otlJXOYJ1zI7mWotZiTOCS28RDShFddYx-b-O5AlYNSKoBSTUgqa5Ies_LxeMR8d-9MrwQUvwBOZtdXQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Chen, Peng</creator><creator>Wang, Ziyan</creator><creator>Zhou, Bin</creator><creator>Yu, Guizhen</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1141-5557</orcidid><orcidid>https://orcid.org/0000-0002-8076-8989</orcidid><orcidid>https://orcid.org/0009-0009-7170-0729</orcidid><orcidid>https://orcid.org/0000-0001-8374-7422</orcidid></search><sort><creationdate>202411</creationdate><title>Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning</title><author>Chen, Peng ; Wang, Ziyan ; Zhou, Bin ; Yu, Guizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-24969af5934ef6bf8602ac476e212dae7a1be61189026d85a4f9eb72942643b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>data fusion</topic><topic>Data models</topic><topic>dynamic OD estimation</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>missing data</topic><topic>Noise reduction</topic><topic>Roads</topic><topic>Trajectory</topic><topic>transfer learning</topic><topic>Urban traffic</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Wang, Ziyan</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><creatorcontrib>Yu, Guizhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Peng</au><au>Wang, Ziyan</au><au>Zhou, Bin</au><au>Yu, Guizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>17147</spage><epage>17159</epage><pages>17147-17159</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Real-time and full-sample vehicle origin-destination (OD) information is essential for traffic management and control in urban road network. However, the low coverage of automatic vehicle identification (AVI) detection devices leads to difficulty in estimating OD. As an emerging traffic data, the trajectories of connected vehicles (CVs) can effectively provide information on their origin and destination. To this end, this paper presents a framework of an autoencoder network utilizing feature transfer to estimate urban dynamic OD based on the characteristics of two data sources. Specifically, a generative adversarial network is introduced to learn high-dimensional feature that is domain-invariant in two data domains. In addition, a pre-training fine-tuning approach is proposed to transfer knowledge pretrained from CV data to the limited AVI observation for OD imputation. Finally, the model was subjected to a real-world road network test. The results showed that for all OD flows the relative error was 11.23 vehicles/30 minutes, which outperformed baseline models, including popular neural networks and existing estimation models for multi-source data fusion. Furthermore, the model's robustness to external factors, such as observation conditions and data quality, was examined. The results demonstrated that the model consistently delivers satisfactory estimation performance across a diverse range of conditions.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3421233</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1141-5557</orcidid><orcidid>https://orcid.org/0000-0002-8076-8989</orcidid><orcidid>https://orcid.org/0009-0009-7170-0729</orcidid><orcidid>https://orcid.org/0000-0001-8374-7422</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17147-17159
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2024_3421233
source IEEE Electronic Library (IEL)
subjects data fusion
Data models
dynamic OD estimation
Estimation
Feature extraction
missing data
Noise reduction
Roads
Trajectory
transfer learning
Urban traffic
Vehicle dynamics
title Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Origin-Destination%20Flow%20Imputation%20Using%20Feature-Based%20Transfer%20Learning&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chen,%20Peng&rft.date=2024-11&rft.volume=25&rft.issue=11&rft.spage=17147&rft.epage=17159&rft.pages=17147-17159&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3421233&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3421233%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10592834&rfr_iscdi=true