A Multi-Source Fusion Approach for Driver Fatigue Detection Using Physiological Signals and Facial Image

Detecting driver fatigue is critical to ensuring road safety. Existing fatigue detection methods typically rely on traditional hand-picked features as inputs. However, these hand-picked features can hardly respond accurately to the driver's fatigue state due to a certain degree of subjectivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-11, Vol.25 (11), p.16614-16624
Hauptverfasser: Peng, Yong, Deng, Hanwen, Xiang, Guoliang, Wu, Xianhui, Yu, Xizhuo, Li, Yingli, Yu, Tianjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16624
container_issue 11
container_start_page 16614
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Peng, Yong
Deng, Hanwen
Xiang, Guoliang
Wu, Xianhui
Yu, Xizhuo
Li, Yingli
Yu, Tianjian
description Detecting driver fatigue is critical to ensuring road safety. Existing fatigue detection methods typically rely on traditional hand-picked features as inputs. However, these hand-picked features can hardly respond accurately to the driver's fatigue state due to a certain degree of subjectivity and the extraction of these features requires a long time window, which limits the accuracy and real-time performance of the detection. This paper proposes a novel fatigue detection method based on multi-source information fusion, which relies entirely on neural networks for automatic feature extraction. Through simulated driving experiments, we recorded physiological signals and facial videos from 21 participants for model training and testing. The results show that our model outperforms existing methods in terms of accuracy and real-time performance, achieving a detection accuracy of 93.15% within a 3-second time window (specificity = 94.04%, sensitivity = 91.71%). The visualization results of the model reveal potential relationships between facial regions for the first time, validating the rationality and effectiveness of our method. The practical issues of fatigue detection methods and future research directions are also explored.
doi_str_mv 10.1109/TITS.2024.3420409
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3420409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10591427</ieee_id><sourcerecordid>10_1109_TITS_2024_3420409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-255c61a373beb0d74917f44e05760fee0ba5a0501a4d89e4fa2f26a8d78161453</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAif6AzJ036cTk2q4OJwrbrkqUnXaRrR9IK-_embBdencPL-xw4DyHPwGYALH_drrabGWdczGLBmWD5DZmAlFnEGCS3485FlDPJ7smD9z8hFRJgQg5z-jk0vY023eA00mLwtmvp_HRyndIHajpHl87-oqOF6m09IF1ij7ofWztv25p-H86BabraatXQja1b1Xiq2ioQ2oZodVQ1PpI7E3J8us4p2RVv28VHtP56Xy3m60iDyPqIS6kTUHEa73HPqlTkkBohkMk0YQaR7ZVU4Q1QospyFEZxwxOVVWkGSfgpnhK43NWu896hKU_OHpU7l8DKUVU5qipHVeVVVWBeLoxFxH99mYPgafwHVVtlgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Multi-Source Fusion Approach for Driver Fatigue Detection Using Physiological Signals and Facial Image</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Yong ; Deng, Hanwen ; Xiang, Guoliang ; Wu, Xianhui ; Yu, Xizhuo ; Li, Yingli ; Yu, Tianjian</creator><creatorcontrib>Peng, Yong ; Deng, Hanwen ; Xiang, Guoliang ; Wu, Xianhui ; Yu, Xizhuo ; Li, Yingli ; Yu, Tianjian</creatorcontrib><description>Detecting driver fatigue is critical to ensuring road safety. Existing fatigue detection methods typically rely on traditional hand-picked features as inputs. However, these hand-picked features can hardly respond accurately to the driver's fatigue state due to a certain degree of subjectivity and the extraction of these features requires a long time window, which limits the accuracy and real-time performance of the detection. This paper proposes a novel fatigue detection method based on multi-source information fusion, which relies entirely on neural networks for automatic feature extraction. Through simulated driving experiments, we recorded physiological signals and facial videos from 21 participants for model training and testing. The results show that our model outperforms existing methods in terms of accuracy and real-time performance, achieving a detection accuracy of 93.15% within a 3-second time window (specificity = 94.04%, sensitivity = 91.71%). The visualization results of the model reveal potential relationships between facial regions for the first time, validating the rationality and effectiveness of our method. The practical issues of fatigue detection methods and future research directions are also explored.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3420409</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; behavioral feature ; Brain modeling ; convolutional neural network ; Fatigue ; Fatigue detection ; Feature extraction ; Mouth ; multi-source information fusion ; physiological signal ; Physiology ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.16614-16624</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-255c61a373beb0d74917f44e05760fee0ba5a0501a4d89e4fa2f26a8d78161453</cites><orcidid>0009-0001-0742-2738 ; 0000-0002-1866-2921 ; 0000-0002-4564-2942 ; 0000-0003-0101-0342 ; 0000-0003-4040-4758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10591427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10591427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Deng, Hanwen</creatorcontrib><creatorcontrib>Xiang, Guoliang</creatorcontrib><creatorcontrib>Wu, Xianhui</creatorcontrib><creatorcontrib>Yu, Xizhuo</creatorcontrib><creatorcontrib>Li, Yingli</creatorcontrib><creatorcontrib>Yu, Tianjian</creatorcontrib><title>A Multi-Source Fusion Approach for Driver Fatigue Detection Using Physiological Signals and Facial Image</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Detecting driver fatigue is critical to ensuring road safety. Existing fatigue detection methods typically rely on traditional hand-picked features as inputs. However, these hand-picked features can hardly respond accurately to the driver's fatigue state due to a certain degree of subjectivity and the extraction of these features requires a long time window, which limits the accuracy and real-time performance of the detection. This paper proposes a novel fatigue detection method based on multi-source information fusion, which relies entirely on neural networks for automatic feature extraction. Through simulated driving experiments, we recorded physiological signals and facial videos from 21 participants for model training and testing. The results show that our model outperforms existing methods in terms of accuracy and real-time performance, achieving a detection accuracy of 93.15% within a 3-second time window (specificity = 94.04%, sensitivity = 91.71%). The visualization results of the model reveal potential relationships between facial regions for the first time, validating the rationality and effectiveness of our method. The practical issues of fatigue detection methods and future research directions are also explored.</description><subject>Accuracy</subject><subject>behavioral feature</subject><subject>Brain modeling</subject><subject>convolutional neural network</subject><subject>Fatigue</subject><subject>Fatigue detection</subject><subject>Feature extraction</subject><subject>Mouth</subject><subject>multi-source information fusion</subject><subject>physiological signal</subject><subject>Physiology</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAif6AzJ036cTk2q4OJwrbrkqUnXaRrR9IK-_embBdencPL-xw4DyHPwGYALH_drrabGWdczGLBmWD5DZmAlFnEGCS3485FlDPJ7smD9z8hFRJgQg5z-jk0vY023eA00mLwtmvp_HRyndIHajpHl87-oqOF6m09IF1ij7ofWztv25p-H86BabraatXQja1b1Xiq2ioQ2oZodVQ1PpI7E3J8us4p2RVv28VHtP56Xy3m60iDyPqIS6kTUHEa73HPqlTkkBohkMk0YQaR7ZVU4Q1QospyFEZxwxOVVWkGSfgpnhK43NWu896hKU_OHpU7l8DKUVU5qipHVeVVVWBeLoxFxH99mYPgafwHVVtlgg</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Peng, Yong</creator><creator>Deng, Hanwen</creator><creator>Xiang, Guoliang</creator><creator>Wu, Xianhui</creator><creator>Yu, Xizhuo</creator><creator>Li, Yingli</creator><creator>Yu, Tianjian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-0742-2738</orcidid><orcidid>https://orcid.org/0000-0002-1866-2921</orcidid><orcidid>https://orcid.org/0000-0002-4564-2942</orcidid><orcidid>https://orcid.org/0000-0003-0101-0342</orcidid><orcidid>https://orcid.org/0000-0003-4040-4758</orcidid></search><sort><creationdate>202411</creationdate><title>A Multi-Source Fusion Approach for Driver Fatigue Detection Using Physiological Signals and Facial Image</title><author>Peng, Yong ; Deng, Hanwen ; Xiang, Guoliang ; Wu, Xianhui ; Yu, Xizhuo ; Li, Yingli ; Yu, Tianjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-255c61a373beb0d74917f44e05760fee0ba5a0501a4d89e4fa2f26a8d78161453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>behavioral feature</topic><topic>Brain modeling</topic><topic>convolutional neural network</topic><topic>Fatigue</topic><topic>Fatigue detection</topic><topic>Feature extraction</topic><topic>Mouth</topic><topic>multi-source information fusion</topic><topic>physiological signal</topic><topic>Physiology</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Deng, Hanwen</creatorcontrib><creatorcontrib>Xiang, Guoliang</creatorcontrib><creatorcontrib>Wu, Xianhui</creatorcontrib><creatorcontrib>Yu, Xizhuo</creatorcontrib><creatorcontrib>Li, Yingli</creatorcontrib><creatorcontrib>Yu, Tianjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Yong</au><au>Deng, Hanwen</au><au>Xiang, Guoliang</au><au>Wu, Xianhui</au><au>Yu, Xizhuo</au><au>Li, Yingli</au><au>Yu, Tianjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Source Fusion Approach for Driver Fatigue Detection Using Physiological Signals and Facial Image</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>16614</spage><epage>16624</epage><pages>16614-16624</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Detecting driver fatigue is critical to ensuring road safety. Existing fatigue detection methods typically rely on traditional hand-picked features as inputs. However, these hand-picked features can hardly respond accurately to the driver's fatigue state due to a certain degree of subjectivity and the extraction of these features requires a long time window, which limits the accuracy and real-time performance of the detection. This paper proposes a novel fatigue detection method based on multi-source information fusion, which relies entirely on neural networks for automatic feature extraction. Through simulated driving experiments, we recorded physiological signals and facial videos from 21 participants for model training and testing. The results show that our model outperforms existing methods in terms of accuracy and real-time performance, achieving a detection accuracy of 93.15% within a 3-second time window (specificity = 94.04%, sensitivity = 91.71%). The visualization results of the model reveal potential relationships between facial regions for the first time, validating the rationality and effectiveness of our method. The practical issues of fatigue detection methods and future research directions are also explored.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3420409</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0001-0742-2738</orcidid><orcidid>https://orcid.org/0000-0002-1866-2921</orcidid><orcidid>https://orcid.org/0000-0002-4564-2942</orcidid><orcidid>https://orcid.org/0000-0003-0101-0342</orcidid><orcidid>https://orcid.org/0000-0003-4040-4758</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.16614-16624
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2024_3420409
source IEEE Electronic Library (IEL)
subjects Accuracy
behavioral feature
Brain modeling
convolutional neural network
Fatigue
Fatigue detection
Feature extraction
Mouth
multi-source information fusion
physiological signal
Physiology
Vehicles
title A Multi-Source Fusion Approach for Driver Fatigue Detection Using Physiological Signals and Facial Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Source%20Fusion%20Approach%20for%20Driver%20Fatigue%20Detection%20Using%20Physiological%20Signals%20and%20Facial%20Image&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Peng,%20Yong&rft.date=2024-11&rft.volume=25&rft.issue=11&rft.spage=16614&rft.epage=16624&rft.pages=16614-16624&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3420409&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3420409%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10591427&rfr_iscdi=true