Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling

The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-08, Vol.25 (8), p.9332-9343
Hauptverfasser: Kang, Mingxin, Zhao, Sufan, Chen, Zeyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9343
container_issue 8
container_start_page 9332
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Kang, Mingxin
Zhao, Sufan
Chen, Zeyu
description The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in order to enhance fuel efficiency. This study presents a hierarchical control strategy for commuter plug-in hybrid electric vehicles (PHEVs), incorporating historical driving data and real-time traffic conditions. Firstly, in the upper layer, an iterative learning algorithm is introduced to analyze the historical driving patterns, enabling derivation of a battery state-of-charge (SOC) reference on the commuter route through solving a global energy optimization problem, that is subsequently provided to the lower layer controller. In the lower layer, real-time influence from preceding vehicles is considered by designing a short-term speed prediction algorithm based on Gaussian process regression (GPR) model. Then, two MPC controllers are designed: one for speed scheduling and another for power distribution. Finally, the simulation validations have been conducted to demonstrate the effectiveness of the proposed strategy.
doi_str_mv 10.1109/TITS.2024.3399000
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3399000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10537079</ieee_id><sourcerecordid>10_1109_TITS_2024_3399000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-7dcd86ee934d8586830bd3617584787a1c8dc436f8bf37d34e8b59d3f2f350a73</originalsourceid><addsrcrecordid>eNpNkEFOwzAQRS0EEqVwACQWvkCKHduxs4RSaCUQiAS2kWuPU6M0qex00duT0C5YzczXf7N4CN1SMqOU5PflqixmKUn5jLE8J4ScoQkVQiWE0Ox83FOe5ESQS3QV48-QckHpBO2WHoIOZuONbvCihVAf8JtudQ1baHtc9EH3MGSuC_ij2deJb_Fy8R3xo45gcTdcPvZd-OOfdK-xbi3-BN0kpd8CLnYw1AqzAbtvfFtfowunmwg3pzlFX8-Lcr5MXt9fVvOH18SkVPWJtMaqDCBn3CqhMsXI2rKMSqG4VFJTo6zhLHNq7Zi0jINai9wylzomiJZsiujxrwldjAFctQt-q8OhoqQalVWjsmpUVp2UDczdkfEA8K8vmCQyZ7_LmGgk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Mingxin ; Zhao, Sufan ; Chen, Zeyu</creator><creatorcontrib>Kang, Mingxin ; Zhao, Sufan ; Chen, Zeyu</creatorcontrib><description>The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in order to enhance fuel efficiency. This study presents a hierarchical control strategy for commuter plug-in hybrid electric vehicles (PHEVs), incorporating historical driving data and real-time traffic conditions. Firstly, in the upper layer, an iterative learning algorithm is introduced to analyze the historical driving patterns, enabling derivation of a battery state-of-charge (SOC) reference on the commuter route through solving a global energy optimization problem, that is subsequently provided to the lower layer controller. In the lower layer, real-time influence from preceding vehicles is considered by designing a short-term speed prediction algorithm based on Gaussian process regression (GPR) model. Then, two MPC controllers are designed: one for speed scheduling and another for power distribution. Finally, the simulation validations have been conducted to demonstrate the effectiveness of the proposed strategy.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3399000</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Energy management ; energy management strategy ; historical driving data ; Hybrid electric vehicle ; model predictive control ; Optimization ; Prediction algorithms ; Real-time systems ; Safety ; speed prediction ; State of charge ; Torque</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.9332-9343</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-7dcd86ee934d8586830bd3617584787a1c8dc436f8bf37d34e8b59d3f2f350a73</cites><orcidid>0000-0003-4754-0525 ; 0000-0002-5103-8258 ; 0000-0002-0401-6953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10537079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10537079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, Mingxin</creatorcontrib><creatorcontrib>Zhao, Sufan</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><title>Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in order to enhance fuel efficiency. This study presents a hierarchical control strategy for commuter plug-in hybrid electric vehicles (PHEVs), incorporating historical driving data and real-time traffic conditions. Firstly, in the upper layer, an iterative learning algorithm is introduced to analyze the historical driving patterns, enabling derivation of a battery state-of-charge (SOC) reference on the commuter route through solving a global energy optimization problem, that is subsequently provided to the lower layer controller. In the lower layer, real-time influence from preceding vehicles is considered by designing a short-term speed prediction algorithm based on Gaussian process regression (GPR) model. Then, two MPC controllers are designed: one for speed scheduling and another for power distribution. Finally, the simulation validations have been conducted to demonstrate the effectiveness of the proposed strategy.</description><subject>Energy management</subject><subject>energy management strategy</subject><subject>historical driving data</subject><subject>Hybrid electric vehicle</subject><subject>model predictive control</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Real-time systems</subject><subject>Safety</subject><subject>speed prediction</subject><subject>State of charge</subject><subject>Torque</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFOwzAQRS0EEqVwACQWvkCKHduxs4RSaCUQiAS2kWuPU6M0qex00duT0C5YzczXf7N4CN1SMqOU5PflqixmKUn5jLE8J4ScoQkVQiWE0Ox83FOe5ESQS3QV48-QckHpBO2WHoIOZuONbvCihVAf8JtudQ1baHtc9EH3MGSuC_ij2deJb_Fy8R3xo45gcTdcPvZd-OOfdK-xbi3-BN0kpd8CLnYw1AqzAbtvfFtfowunmwg3pzlFX8-Lcr5MXt9fVvOH18SkVPWJtMaqDCBn3CqhMsXI2rKMSqG4VFJTo6zhLHNq7Zi0jINai9wylzomiJZsiujxrwldjAFctQt-q8OhoqQalVWjsmpUVp2UDczdkfEA8K8vmCQyZ7_LmGgk</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kang, Mingxin</creator><creator>Zhao, Sufan</creator><creator>Chen, Zeyu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4754-0525</orcidid><orcidid>https://orcid.org/0000-0002-5103-8258</orcidid><orcidid>https://orcid.org/0000-0002-0401-6953</orcidid></search><sort><creationdate>20240801</creationdate><title>Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling</title><author>Kang, Mingxin ; Zhao, Sufan ; Chen, Zeyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-7dcd86ee934d8586830bd3617584787a1c8dc436f8bf37d34e8b59d3f2f350a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy management</topic><topic>energy management strategy</topic><topic>historical driving data</topic><topic>Hybrid electric vehicle</topic><topic>model predictive control</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Real-time systems</topic><topic>Safety</topic><topic>speed prediction</topic><topic>State of charge</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Mingxin</creatorcontrib><creatorcontrib>Zhao, Sufan</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, Mingxin</au><au>Zhao, Sufan</au><au>Chen, Zeyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>9332</spage><epage>9343</epage><pages>9332-9343</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in order to enhance fuel efficiency. This study presents a hierarchical control strategy for commuter plug-in hybrid electric vehicles (PHEVs), incorporating historical driving data and real-time traffic conditions. Firstly, in the upper layer, an iterative learning algorithm is introduced to analyze the historical driving patterns, enabling derivation of a battery state-of-charge (SOC) reference on the commuter route through solving a global energy optimization problem, that is subsequently provided to the lower layer controller. In the lower layer, real-time influence from preceding vehicles is considered by designing a short-term speed prediction algorithm based on Gaussian process regression (GPR) model. Then, two MPC controllers are designed: one for speed scheduling and another for power distribution. Finally, the simulation validations have been conducted to demonstrate the effectiveness of the proposed strategy.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3399000</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4754-0525</orcidid><orcidid>https://orcid.org/0000-0002-5103-8258</orcidid><orcidid>https://orcid.org/0000-0002-0401-6953</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.9332-9343
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2024_3399000
source IEEE Electronic Library (IEL)
subjects Energy management
energy management strategy
historical driving data
Hybrid electric vehicle
model predictive control
Optimization
Prediction algorithms
Real-time systems
Safety
speed prediction
State of charge
Torque
title Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Energy%20Management%20Strategy%20for%20Plug-in%20HEVs%20Based%20on%20Historical%20Data%20and%20Real-Time%20Speed%20Scheduling&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Kang,%20Mingxin&rft.date=2024-08-01&rft.volume=25&rft.issue=8&rft.spage=9332&rft.epage=9343&rft.pages=9332-9343&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3399000&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3399000%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10537079&rfr_iscdi=true