Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling
The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in or...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-08, Vol.25 (8), p.9332-9343 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9343 |
---|---|
container_issue | 8 |
container_start_page | 9332 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Kang, Mingxin Zhao, Sufan Chen, Zeyu |
description | The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in order to enhance fuel efficiency. This study presents a hierarchical control strategy for commuter plug-in hybrid electric vehicles (PHEVs), incorporating historical driving data and real-time traffic conditions. Firstly, in the upper layer, an iterative learning algorithm is introduced to analyze the historical driving patterns, enabling derivation of a battery state-of-charge (SOC) reference on the commuter route through solving a global energy optimization problem, that is subsequently provided to the lower layer controller. In the lower layer, real-time influence from preceding vehicles is considered by designing a short-term speed prediction algorithm based on Gaussian process regression (GPR) model. Then, two MPC controllers are designed: one for speed scheduling and another for power distribution. Finally, the simulation validations have been conducted to demonstrate the effectiveness of the proposed strategy. |
doi_str_mv | 10.1109/TITS.2024.3399000 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3399000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10537079</ieee_id><sourcerecordid>10_1109_TITS_2024_3399000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-7dcd86ee934d8586830bd3617584787a1c8dc436f8bf37d34e8b59d3f2f350a73</originalsourceid><addsrcrecordid>eNpNkEFOwzAQRS0EEqVwACQWvkCKHduxs4RSaCUQiAS2kWuPU6M0qex00duT0C5YzczXf7N4CN1SMqOU5PflqixmKUn5jLE8J4ScoQkVQiWE0Ox83FOe5ESQS3QV48-QckHpBO2WHoIOZuONbvCihVAf8JtudQ1baHtc9EH3MGSuC_ij2deJb_Fy8R3xo45gcTdcPvZd-OOfdK-xbi3-BN0kpd8CLnYw1AqzAbtvfFtfowunmwg3pzlFX8-Lcr5MXt9fVvOH18SkVPWJtMaqDCBn3CqhMsXI2rKMSqG4VFJTo6zhLHNq7Zi0jINai9wylzomiJZsiujxrwldjAFctQt-q8OhoqQalVWjsmpUVp2UDczdkfEA8K8vmCQyZ7_LmGgk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Mingxin ; Zhao, Sufan ; Chen, Zeyu</creator><creatorcontrib>Kang, Mingxin ; Zhao, Sufan ; Chen, Zeyu</creatorcontrib><description>The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in order to enhance fuel efficiency. This study presents a hierarchical control strategy for commuter plug-in hybrid electric vehicles (PHEVs), incorporating historical driving data and real-time traffic conditions. Firstly, in the upper layer, an iterative learning algorithm is introduced to analyze the historical driving patterns, enabling derivation of a battery state-of-charge (SOC) reference on the commuter route through solving a global energy optimization problem, that is subsequently provided to the lower layer controller. In the lower layer, real-time influence from preceding vehicles is considered by designing a short-term speed prediction algorithm based on Gaussian process regression (GPR) model. Then, two MPC controllers are designed: one for speed scheduling and another for power distribution. Finally, the simulation validations have been conducted to demonstrate the effectiveness of the proposed strategy.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3399000</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Energy management ; energy management strategy ; historical driving data ; Hybrid electric vehicle ; model predictive control ; Optimization ; Prediction algorithms ; Real-time systems ; Safety ; speed prediction ; State of charge ; Torque</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.9332-9343</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-7dcd86ee934d8586830bd3617584787a1c8dc436f8bf37d34e8b59d3f2f350a73</cites><orcidid>0000-0003-4754-0525 ; 0000-0002-5103-8258 ; 0000-0002-0401-6953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10537079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10537079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, Mingxin</creatorcontrib><creatorcontrib>Zhao, Sufan</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><title>Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in order to enhance fuel efficiency. This study presents a hierarchical control strategy for commuter plug-in hybrid electric vehicles (PHEVs), incorporating historical driving data and real-time traffic conditions. Firstly, in the upper layer, an iterative learning algorithm is introduced to analyze the historical driving patterns, enabling derivation of a battery state-of-charge (SOC) reference on the commuter route through solving a global energy optimization problem, that is subsequently provided to the lower layer controller. In the lower layer, real-time influence from preceding vehicles is considered by designing a short-term speed prediction algorithm based on Gaussian process regression (GPR) model. Then, two MPC controllers are designed: one for speed scheduling and another for power distribution. Finally, the simulation validations have been conducted to demonstrate the effectiveness of the proposed strategy.</description><subject>Energy management</subject><subject>energy management strategy</subject><subject>historical driving data</subject><subject>Hybrid electric vehicle</subject><subject>model predictive control</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Real-time systems</subject><subject>Safety</subject><subject>speed prediction</subject><subject>State of charge</subject><subject>Torque</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFOwzAQRS0EEqVwACQWvkCKHduxs4RSaCUQiAS2kWuPU6M0qex00duT0C5YzczXf7N4CN1SMqOU5PflqixmKUn5jLE8J4ScoQkVQiWE0Ox83FOe5ESQS3QV48-QckHpBO2WHoIOZuONbvCihVAf8JtudQ1baHtc9EH3MGSuC_ij2deJb_Fy8R3xo45gcTdcPvZd-OOfdK-xbi3-BN0kpd8CLnYw1AqzAbtvfFtfowunmwg3pzlFX8-Lcr5MXt9fVvOH18SkVPWJtMaqDCBn3CqhMsXI2rKMSqG4VFJTo6zhLHNq7Zi0jINai9wylzomiJZsiujxrwldjAFctQt-q8OhoqQalVWjsmpUVp2UDczdkfEA8K8vmCQyZ7_LmGgk</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Kang, Mingxin</creator><creator>Zhao, Sufan</creator><creator>Chen, Zeyu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4754-0525</orcidid><orcidid>https://orcid.org/0000-0002-5103-8258</orcidid><orcidid>https://orcid.org/0000-0002-0401-6953</orcidid></search><sort><creationdate>20240801</creationdate><title>Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling</title><author>Kang, Mingxin ; Zhao, Sufan ; Chen, Zeyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-7dcd86ee934d8586830bd3617584787a1c8dc436f8bf37d34e8b59d3f2f350a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy management</topic><topic>energy management strategy</topic><topic>historical driving data</topic><topic>Hybrid electric vehicle</topic><topic>model predictive control</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Real-time systems</topic><topic>Safety</topic><topic>speed prediction</topic><topic>State of charge</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Mingxin</creatorcontrib><creatorcontrib>Zhao, Sufan</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, Mingxin</au><au>Zhao, Sufan</au><au>Chen, Zeyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>9332</spage><epage>9343</epage><pages>9332-9343</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The rapid development of the Internet of Things (IoT) and cloud computing has presented unprecedented opportunities and challenges for the automotive industry. As additional traffic data becomes accessible, the automotive powertrain has the capability to employ sophisticated control algorithms in order to enhance fuel efficiency. This study presents a hierarchical control strategy for commuter plug-in hybrid electric vehicles (PHEVs), incorporating historical driving data and real-time traffic conditions. Firstly, in the upper layer, an iterative learning algorithm is introduced to analyze the historical driving patterns, enabling derivation of a battery state-of-charge (SOC) reference on the commuter route through solving a global energy optimization problem, that is subsequently provided to the lower layer controller. In the lower layer, real-time influence from preceding vehicles is considered by designing a short-term speed prediction algorithm based on Gaussian process regression (GPR) model. Then, two MPC controllers are designed: one for speed scheduling and another for power distribution. Finally, the simulation validations have been conducted to demonstrate the effectiveness of the proposed strategy.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3399000</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4754-0525</orcidid><orcidid>https://orcid.org/0000-0002-5103-8258</orcidid><orcidid>https://orcid.org/0000-0002-0401-6953</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.9332-9343 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2024_3399000 |
source | IEEE Electronic Library (IEL) |
subjects | Energy management energy management strategy historical driving data Hybrid electric vehicle model predictive control Optimization Prediction algorithms Real-time systems Safety speed prediction State of charge Torque |
title | Hierarchical Energy Management Strategy for Plug-in HEVs Based on Historical Data and Real-Time Speed Scheduling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Energy%20Management%20Strategy%20for%20Plug-in%20HEVs%20Based%20on%20Historical%20Data%20and%20Real-Time%20Speed%20Scheduling&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Kang,%20Mingxin&rft.date=2024-08-01&rft.volume=25&rft.issue=8&rft.spage=9332&rft.epage=9343&rft.pages=9332-9343&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3399000&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3399000%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10537079&rfr_iscdi=true |