Impact of Smartphone Activity on Pedestrian Safety: A Case Study in Seoul

As pedestrian accidents are increasing in frequency, the use of smartphones while walking has emerged as a critical issue in traffic safety. Through a case study in Seoul, this research aims to reveal the impact of smartphone activity on pedestrian safety. To this end, this study constructs a wide r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-10, Vol.25 (10), p.13194-13203
Hauptverfasser: Han, Youngjun, Lee, Hasik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13203
container_issue 10
container_start_page 13194
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Han, Youngjun
Lee, Hasik
description As pedestrian accidents are increasing in frequency, the use of smartphones while walking has emerged as a critical issue in traffic safety. Through a case study in Seoul, this research aims to reveal the impact of smartphone activity on pedestrian safety. To this end, this study constructs a wide range of datasets, encompassing smartphone activity data, as well as transportation and social-economic data. The primary smartphone activities of pedestrian are identified through a survey of 1,000 Seoul citizens, resulting in 12 categories with 81 smartphone applications. To depict pedestrian accidents based on the collected data, this research employs deep learning models and compares their performance with conventional multiple regression models. The analysis results indicate that deep learning models utilizing smartphone data achieve better performance, particularly in estimating the rate of pedestrian accidents, which is derived without the dominant factor of the living population. Using the developed model, this research estimates pedestrian accidents under scenarios of increased smartphone usage. The estimation results suggest that accidents will likely increase with the rise of popular smartphone activities such as watching videos, riding electric scooters, or using delivery services. Rational regulations for pedestrian smartphone usage should be considered to alleviate the negative impacts of smartphone usage on pedestrian safety.
doi_str_mv 10.1109/TITS.2024.3391006
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3391006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521493</ieee_id><sourcerecordid>10_1109_TITS_2024_3391006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-80d700a3780d89d085033bed2bfe898a2b19cc94fb45ac6b5cf1ab96713fc6f93</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKc_QPAhf6Dz3qTpEt_G0FkYKLQ-lzS9wcq2jiYT-u9t2R58OofDPZfDx9gjwgIRzHOZl8VCgEgXUhoEyK7YDJXSCQBm15MXaWJAwS27C-FnTFOFOGN5vj9aF3nnebG3fTx-dwfiKxfb3zYOvDvwT2ooxL61B15YT3F44Su-toF4EU_NwNsxp-60u2c33u4CPVx0zr7eXsv1e7L92OTr1TZxAnVMNDRLACuXo9GmAa1AypoaUXvSRltRo3HOpL5OlXVZrZxHW5tsidK7zBs5Z3j-6_ouhJ58dezbcfpQIVQTi2piUU0sqguLsfN07rRE9O9eCUyNlH-94lq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impact of Smartphone Activity on Pedestrian Safety: A Case Study in Seoul</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Youngjun ; Lee, Hasik</creator><creatorcontrib>Han, Youngjun ; Lee, Hasik</creatorcontrib><description>As pedestrian accidents are increasing in frequency, the use of smartphones while walking has emerged as a critical issue in traffic safety. Through a case study in Seoul, this research aims to reveal the impact of smartphone activity on pedestrian safety. To this end, this study constructs a wide range of datasets, encompassing smartphone activity data, as well as transportation and social-economic data. The primary smartphone activities of pedestrian are identified through a survey of 1,000 Seoul citizens, resulting in 12 categories with 81 smartphone applications. To depict pedestrian accidents based on the collected data, this research employs deep learning models and compares their performance with conventional multiple regression models. The analysis results indicate that deep learning models utilizing smartphone data achieve better performance, particularly in estimating the rate of pedestrian accidents, which is derived without the dominant factor of the living population. Using the developed model, this research estimates pedestrian accidents under scenarios of increased smartphone usage. The estimation results suggest that accidents will likely increase with the rise of popular smartphone activities such as watching videos, riding electric scooters, or using delivery services. Rational regulations for pedestrian smartphone usage should be considered to alleviate the negative impacts of smartphone usage on pedestrian safety.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3391006</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accidents ; deep learning ; Legged locomotion ; multiple regression ; Pedestrian accident ; Pedestrians ; Safety ; smartphone data ; Solid modeling ; Surveys ; Transportation</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.13194-13203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-80d700a3780d89d085033bed2bfe898a2b19cc94fb45ac6b5cf1ab96713fc6f93</cites><orcidid>0000-0002-3973-1893 ; 0000-0003-4764-691X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Youngjun</creatorcontrib><creatorcontrib>Lee, Hasik</creatorcontrib><title>Impact of Smartphone Activity on Pedestrian Safety: A Case Study in Seoul</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>As pedestrian accidents are increasing in frequency, the use of smartphones while walking has emerged as a critical issue in traffic safety. Through a case study in Seoul, this research aims to reveal the impact of smartphone activity on pedestrian safety. To this end, this study constructs a wide range of datasets, encompassing smartphone activity data, as well as transportation and social-economic data. The primary smartphone activities of pedestrian are identified through a survey of 1,000 Seoul citizens, resulting in 12 categories with 81 smartphone applications. To depict pedestrian accidents based on the collected data, this research employs deep learning models and compares their performance with conventional multiple regression models. The analysis results indicate that deep learning models utilizing smartphone data achieve better performance, particularly in estimating the rate of pedestrian accidents, which is derived without the dominant factor of the living population. Using the developed model, this research estimates pedestrian accidents under scenarios of increased smartphone usage. The estimation results suggest that accidents will likely increase with the rise of popular smartphone activities such as watching videos, riding electric scooters, or using delivery services. Rational regulations for pedestrian smartphone usage should be considered to alleviate the negative impacts of smartphone usage on pedestrian safety.</description><subject>Accidents</subject><subject>deep learning</subject><subject>Legged locomotion</subject><subject>multiple regression</subject><subject>Pedestrian accident</subject><subject>Pedestrians</subject><subject>Safety</subject><subject>smartphone data</subject><subject>Solid modeling</subject><subject>Surveys</subject><subject>Transportation</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOKc_QPAhf6Dz3qTpEt_G0FkYKLQ-lzS9wcq2jiYT-u9t2R58OofDPZfDx9gjwgIRzHOZl8VCgEgXUhoEyK7YDJXSCQBm15MXaWJAwS27C-FnTFOFOGN5vj9aF3nnebG3fTx-dwfiKxfb3zYOvDvwT2ooxL61B15YT3F44Su-toF4EU_NwNsxp-60u2c33u4CPVx0zr7eXsv1e7L92OTr1TZxAnVMNDRLACuXo9GmAa1AypoaUXvSRltRo3HOpL5OlXVZrZxHW5tsidK7zBs5Z3j-6_ouhJ58dezbcfpQIVQTi2piUU0sqguLsfN07rRE9O9eCUyNlH-94lq0</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Han, Youngjun</creator><creator>Lee, Hasik</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3973-1893</orcidid><orcidid>https://orcid.org/0000-0003-4764-691X</orcidid></search><sort><creationdate>20241001</creationdate><title>Impact of Smartphone Activity on Pedestrian Safety: A Case Study in Seoul</title><author>Han, Youngjun ; Lee, Hasik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-80d700a3780d89d085033bed2bfe898a2b19cc94fb45ac6b5cf1ab96713fc6f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accidents</topic><topic>deep learning</topic><topic>Legged locomotion</topic><topic>multiple regression</topic><topic>Pedestrian accident</topic><topic>Pedestrians</topic><topic>Safety</topic><topic>smartphone data</topic><topic>Solid modeling</topic><topic>Surveys</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Youngjun</creatorcontrib><creatorcontrib>Lee, Hasik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Youngjun</au><au>Lee, Hasik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Smartphone Activity on Pedestrian Safety: A Case Study in Seoul</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>25</volume><issue>10</issue><spage>13194</spage><epage>13203</epage><pages>13194-13203</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>As pedestrian accidents are increasing in frequency, the use of smartphones while walking has emerged as a critical issue in traffic safety. Through a case study in Seoul, this research aims to reveal the impact of smartphone activity on pedestrian safety. To this end, this study constructs a wide range of datasets, encompassing smartphone activity data, as well as transportation and social-economic data. The primary smartphone activities of pedestrian are identified through a survey of 1,000 Seoul citizens, resulting in 12 categories with 81 smartphone applications. To depict pedestrian accidents based on the collected data, this research employs deep learning models and compares their performance with conventional multiple regression models. The analysis results indicate that deep learning models utilizing smartphone data achieve better performance, particularly in estimating the rate of pedestrian accidents, which is derived without the dominant factor of the living population. Using the developed model, this research estimates pedestrian accidents under scenarios of increased smartphone usage. The estimation results suggest that accidents will likely increase with the rise of popular smartphone activities such as watching videos, riding electric scooters, or using delivery services. Rational regulations for pedestrian smartphone usage should be considered to alleviate the negative impacts of smartphone usage on pedestrian safety.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3391006</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3973-1893</orcidid><orcidid>https://orcid.org/0000-0003-4764-691X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-10, Vol.25 (10), p.13194-13203
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2024_3391006
source IEEE Electronic Library (IEL)
subjects Accidents
deep learning
Legged locomotion
multiple regression
Pedestrian accident
Pedestrians
Safety
smartphone data
Solid modeling
Surveys
Transportation
title Impact of Smartphone Activity on Pedestrian Safety: A Case Study in Seoul
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Smartphone%20Activity%20on%20Pedestrian%20Safety:%20A%20Case%20Study%20in%20Seoul&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Han,%20Youngjun&rft.date=2024-10-01&rft.volume=25&rft.issue=10&rft.spage=13194&rft.epage=13203&rft.pages=13194-13203&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3391006&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3391006%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10521493&rfr_iscdi=true