A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections

This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-07, Vol.25 (7), p.6824-6835
Hauptverfasser: Zhao, Yuan, Gong, Dekui, Wen, Shixi, Ding, Lei, Guo, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6835
container_issue 7
container_start_page 6824
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Zhao, Yuan
Gong, Dekui
Wen, Shixi
Ding, Lei
Guo, Ge
description This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objective problem that aims to improve the efficiency of traffic and fuel economy. Secondly, to prevent the privacy of the transmitted data of vehicles from being inferred by untrusted cloud servers or external attackers, an affine masking-based privacy strategy is designed. Specifically, the vehicle first uploads the encrypted state data to the cloud with the affine masking method. Then the cloud returns the control input by solving the newly constructed optimization problem, which is different but equivalent to the original problem. Then the vehicle calculates the real control input by the inverse affine masking mechanism. Simulation examples show that the proposed PPDC scheme can guarantee collision avoidance and the privacy protection of transmitted data of CAVs, improve traffic efficiency as well as fuel economy, and avoid extensive computation burden.
doi_str_mv 10.1109/TITS.2023.3346395
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3346395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10401008</ieee_id><sourcerecordid>3075426652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ef1994da49858e04715055f392334d6a036f3aa5854902038e4be15be6fa16123</originalsourceid><addsrcrecordid>eNpNkM9OwkAQxhujiYg-gImHJp4XZ7t_aI-IoiQYSUCvzbZMYUnZxd0tCQ_ge9sGDp7my8z3m8x8UXRPYUApZE_L6XIxSCBhA8a4ZJm4iHpUiJQAUHnZ6YSTDARcRzfeb9suF5T2ot9RPHf6oMojmTv06A7arMmz8riKX7QPThdNaPXY1rUqrFNBHzBelBvcYVxZ1w6MwbKzjJpgjd3ZxsffuNFljT5WIf5o6qDJTJkW02ujajJxiPHUBHS-JbU1_ja6qlTt8e5c-9HX5HU5fiezz7fpeDQjZcJlIFjRLOMrxbNUpAh8SAUIUbEsaZ9eSQVMVkwpkQqeQQIsRV4gFQXKSlFJE9aPHk97987-NOhDvrWNa2_yOYOh4ImUonPRk6t01nuHVb53eqfcMaeQd2nnXdp5l3Z-TrtlHk6MRsR_fg4UIGV_Dnx8QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075426652</pqid></control><display><type>article</type><title>A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yuan ; Gong, Dekui ; Wen, Shixi ; Ding, Lei ; Guo, Ge</creator><creatorcontrib>Zhao, Yuan ; Gong, Dekui ; Wen, Shixi ; Ding, Lei ; Guo, Ge</creatorcontrib><description>This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objective problem that aims to improve the efficiency of traffic and fuel economy. Secondly, to prevent the privacy of the transmitted data of vehicles from being inferred by untrusted cloud servers or external attackers, an affine masking-based privacy strategy is designed. Specifically, the vehicle first uploads the encrypted state data to the cloud with the affine masking method. Then the cloud returns the control input by solving the newly constructed optimization problem, which is different but equivalent to the original problem. Then the vehicle calculates the real control input by the inverse affine masking mechanism. Simulation examples show that the proposed PPDC scheme can guarantee collision avoidance and the privacy protection of transmitted data of CAVs, improve traffic efficiency as well as fuel economy, and avoid extensive computation burden.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3346395</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous vehicles ; Cloud computing ; Collaboration ; Collision avoidance ; Connected and automated vehicles ; Data privacy ; Energy efficiency ; Fuel consumption ; Fuel economy ; Masking ; Optimal control ; Optimization ; Privacy ; privacy preserving ; signal-free intersections ; Traffic intersections ; Trajectory ; vehicle-cloud collaboration system ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-07, Vol.25 (7), p.6824-6835</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ef1994da49858e04715055f392334d6a036f3aa5854902038e4be15be6fa16123</cites><orcidid>0000-0003-3555-1411 ; 0000-0003-4752-4920 ; 0000-0002-4285-2506 ; 0000-0003-3458-2478 ; 0000-0001-7997-5385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10401008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10401008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Gong, Dekui</creatorcontrib><creatorcontrib>Wen, Shixi</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Guo, Ge</creatorcontrib><title>A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objective problem that aims to improve the efficiency of traffic and fuel economy. Secondly, to prevent the privacy of the transmitted data of vehicles from being inferred by untrusted cloud servers or external attackers, an affine masking-based privacy strategy is designed. Specifically, the vehicle first uploads the encrypted state data to the cloud with the affine masking method. Then the cloud returns the control input by solving the newly constructed optimization problem, which is different but equivalent to the original problem. Then the vehicle calculates the real control input by the inverse affine masking mechanism. Simulation examples show that the proposed PPDC scheme can guarantee collision avoidance and the privacy protection of transmitted data of CAVs, improve traffic efficiency as well as fuel economy, and avoid extensive computation burden.</description><subject>Autonomous vehicles</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Collision avoidance</subject><subject>Connected and automated vehicles</subject><subject>Data privacy</subject><subject>Energy efficiency</subject><subject>Fuel consumption</subject><subject>Fuel economy</subject><subject>Masking</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Privacy</subject><subject>privacy preserving</subject><subject>signal-free intersections</subject><subject>Traffic intersections</subject><subject>Trajectory</subject><subject>vehicle-cloud collaboration system</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9OwkAQxhujiYg-gImHJp4XZ7t_aI-IoiQYSUCvzbZMYUnZxd0tCQ_ge9sGDp7my8z3m8x8UXRPYUApZE_L6XIxSCBhA8a4ZJm4iHpUiJQAUHnZ6YSTDARcRzfeb9suF5T2ot9RPHf6oMojmTv06A7arMmz8riKX7QPThdNaPXY1rUqrFNBHzBelBvcYVxZ1w6MwbKzjJpgjd3ZxsffuNFljT5WIf5o6qDJTJkW02ujajJxiPHUBHS-JbU1_ja6qlTt8e5c-9HX5HU5fiezz7fpeDQjZcJlIFjRLOMrxbNUpAh8SAUIUbEsaZ9eSQVMVkwpkQqeQQIsRV4gFQXKSlFJE9aPHk97987-NOhDvrWNa2_yOYOh4ImUonPRk6t01nuHVb53eqfcMaeQd2nnXdp5l3Z-TrtlHk6MRsR_fg4UIGV_Dnx8QA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhao, Yuan</creator><creator>Gong, Dekui</creator><creator>Wen, Shixi</creator><creator>Ding, Lei</creator><creator>Guo, Ge</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3555-1411</orcidid><orcidid>https://orcid.org/0000-0003-4752-4920</orcidid><orcidid>https://orcid.org/0000-0002-4285-2506</orcidid><orcidid>https://orcid.org/0000-0003-3458-2478</orcidid><orcidid>https://orcid.org/0000-0001-7997-5385</orcidid></search><sort><creationdate>20240701</creationdate><title>A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections</title><author>Zhao, Yuan ; Gong, Dekui ; Wen, Shixi ; Ding, Lei ; Guo, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ef1994da49858e04715055f392334d6a036f3aa5854902038e4be15be6fa16123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous vehicles</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Collision avoidance</topic><topic>Connected and automated vehicles</topic><topic>Data privacy</topic><topic>Energy efficiency</topic><topic>Fuel consumption</topic><topic>Fuel economy</topic><topic>Masking</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Privacy</topic><topic>privacy preserving</topic><topic>signal-free intersections</topic><topic>Traffic intersections</topic><topic>Trajectory</topic><topic>vehicle-cloud collaboration system</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Gong, Dekui</creatorcontrib><creatorcontrib>Wen, Shixi</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Guo, Ge</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yuan</au><au>Gong, Dekui</au><au>Wen, Shixi</au><au>Ding, Lei</au><au>Guo, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>25</volume><issue>7</issue><spage>6824</spage><epage>6835</epage><pages>6824-6835</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objective problem that aims to improve the efficiency of traffic and fuel economy. Secondly, to prevent the privacy of the transmitted data of vehicles from being inferred by untrusted cloud servers or external attackers, an affine masking-based privacy strategy is designed. Specifically, the vehicle first uploads the encrypted state data to the cloud with the affine masking method. Then the cloud returns the control input by solving the newly constructed optimization problem, which is different but equivalent to the original problem. Then the vehicle calculates the real control input by the inverse affine masking mechanism. Simulation examples show that the proposed PPDC scheme can guarantee collision avoidance and the privacy protection of transmitted data of CAVs, improve traffic efficiency as well as fuel economy, and avoid extensive computation burden.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3346395</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3555-1411</orcidid><orcidid>https://orcid.org/0000-0003-4752-4920</orcidid><orcidid>https://orcid.org/0000-0002-4285-2506</orcidid><orcidid>https://orcid.org/0000-0003-3458-2478</orcidid><orcidid>https://orcid.org/0000-0001-7997-5385</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-07, Vol.25 (7), p.6824-6835
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2023_3346395
source IEEE Electronic Library (IEL)
subjects Autonomous vehicles
Cloud computing
Collaboration
Collision avoidance
Connected and automated vehicles
Data privacy
Energy efficiency
Fuel consumption
Fuel economy
Masking
Optimal control
Optimization
Privacy
privacy preserving
signal-free intersections
Traffic intersections
Trajectory
vehicle-cloud collaboration system
Vehicles
title A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Privacy-Preserving-Based%20Distributed%20Collaborative%20Scheme%20for%20Connected%20Autonomous%20Vehicles%20at%20Multi-Lane%20Signal-Free%20Intersections&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhao,%20Yuan&rft.date=2024-07-01&rft.volume=25&rft.issue=7&rft.spage=6824&rft.epage=6835&rft.pages=6824-6835&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3346395&rft_dat=%3Cproquest_RIE%3E3075426652%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075426652&rft_id=info:pmid/&rft_ieee_id=10401008&rfr_iscdi=true