A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections
This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objectiv...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-07, Vol.25 (7), p.6824-6835 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6835 |
---|---|
container_issue | 7 |
container_start_page | 6824 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Zhao, Yuan Gong, Dekui Wen, Shixi Ding, Lei Guo, Ge |
description | This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objective problem that aims to improve the efficiency of traffic and fuel economy. Secondly, to prevent the privacy of the transmitted data of vehicles from being inferred by untrusted cloud servers or external attackers, an affine masking-based privacy strategy is designed. Specifically, the vehicle first uploads the encrypted state data to the cloud with the affine masking method. Then the cloud returns the control input by solving the newly constructed optimization problem, which is different but equivalent to the original problem. Then the vehicle calculates the real control input by the inverse affine masking mechanism. Simulation examples show that the proposed PPDC scheme can guarantee collision avoidance and the privacy protection of transmitted data of CAVs, improve traffic efficiency as well as fuel economy, and avoid extensive computation burden. |
doi_str_mv | 10.1109/TITS.2023.3346395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3346395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10401008</ieee_id><sourcerecordid>3075426652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ef1994da49858e04715055f392334d6a036f3aa5854902038e4be15be6fa16123</originalsourceid><addsrcrecordid>eNpNkM9OwkAQxhujiYg-gImHJp4XZ7t_aI-IoiQYSUCvzbZMYUnZxd0tCQ_ge9sGDp7my8z3m8x8UXRPYUApZE_L6XIxSCBhA8a4ZJm4iHpUiJQAUHnZ6YSTDARcRzfeb9suF5T2ot9RPHf6oMojmTv06A7arMmz8riKX7QPThdNaPXY1rUqrFNBHzBelBvcYVxZ1w6MwbKzjJpgjd3ZxsffuNFljT5WIf5o6qDJTJkW02ujajJxiPHUBHS-JbU1_ja6qlTt8e5c-9HX5HU5fiezz7fpeDQjZcJlIFjRLOMrxbNUpAh8SAUIUbEsaZ9eSQVMVkwpkQqeQQIsRV4gFQXKSlFJE9aPHk97987-NOhDvrWNa2_yOYOh4ImUonPRk6t01nuHVb53eqfcMaeQd2nnXdp5l3Z-TrtlHk6MRsR_fg4UIGV_Dnx8QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075426652</pqid></control><display><type>article</type><title>A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yuan ; Gong, Dekui ; Wen, Shixi ; Ding, Lei ; Guo, Ge</creator><creatorcontrib>Zhao, Yuan ; Gong, Dekui ; Wen, Shixi ; Ding, Lei ; Guo, Ge</creatorcontrib><description>This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objective problem that aims to improve the efficiency of traffic and fuel economy. Secondly, to prevent the privacy of the transmitted data of vehicles from being inferred by untrusted cloud servers or external attackers, an affine masking-based privacy strategy is designed. Specifically, the vehicle first uploads the encrypted state data to the cloud with the affine masking method. Then the cloud returns the control input by solving the newly constructed optimization problem, which is different but equivalent to the original problem. Then the vehicle calculates the real control input by the inverse affine masking mechanism. Simulation examples show that the proposed PPDC scheme can guarantee collision avoidance and the privacy protection of transmitted data of CAVs, improve traffic efficiency as well as fuel economy, and avoid extensive computation burden.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3346395</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous vehicles ; Cloud computing ; Collaboration ; Collision avoidance ; Connected and automated vehicles ; Data privacy ; Energy efficiency ; Fuel consumption ; Fuel economy ; Masking ; Optimal control ; Optimization ; Privacy ; privacy preserving ; signal-free intersections ; Traffic intersections ; Trajectory ; vehicle-cloud collaboration system ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-07, Vol.25 (7), p.6824-6835</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ef1994da49858e04715055f392334d6a036f3aa5854902038e4be15be6fa16123</cites><orcidid>0000-0003-3555-1411 ; 0000-0003-4752-4920 ; 0000-0002-4285-2506 ; 0000-0003-3458-2478 ; 0000-0001-7997-5385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10401008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10401008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Gong, Dekui</creatorcontrib><creatorcontrib>Wen, Shixi</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Guo, Ge</creatorcontrib><title>A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objective problem that aims to improve the efficiency of traffic and fuel economy. Secondly, to prevent the privacy of the transmitted data of vehicles from being inferred by untrusted cloud servers or external attackers, an affine masking-based privacy strategy is designed. Specifically, the vehicle first uploads the encrypted state data to the cloud with the affine masking method. Then the cloud returns the control input by solving the newly constructed optimization problem, which is different but equivalent to the original problem. Then the vehicle calculates the real control input by the inverse affine masking mechanism. Simulation examples show that the proposed PPDC scheme can guarantee collision avoidance and the privacy protection of transmitted data of CAVs, improve traffic efficiency as well as fuel economy, and avoid extensive computation burden.</description><subject>Autonomous vehicles</subject><subject>Cloud computing</subject><subject>Collaboration</subject><subject>Collision avoidance</subject><subject>Connected and automated vehicles</subject><subject>Data privacy</subject><subject>Energy efficiency</subject><subject>Fuel consumption</subject><subject>Fuel economy</subject><subject>Masking</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Privacy</subject><subject>privacy preserving</subject><subject>signal-free intersections</subject><subject>Traffic intersections</subject><subject>Trajectory</subject><subject>vehicle-cloud collaboration system</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9OwkAQxhujiYg-gImHJp4XZ7t_aI-IoiQYSUCvzbZMYUnZxd0tCQ_ge9sGDp7my8z3m8x8UXRPYUApZE_L6XIxSCBhA8a4ZJm4iHpUiJQAUHnZ6YSTDARcRzfeb9suF5T2ot9RPHf6oMojmTv06A7arMmz8riKX7QPThdNaPXY1rUqrFNBHzBelBvcYVxZ1w6MwbKzjJpgjd3ZxsffuNFljT5WIf5o6qDJTJkW02ujajJxiPHUBHS-JbU1_ja6qlTt8e5c-9HX5HU5fiezz7fpeDQjZcJlIFjRLOMrxbNUpAh8SAUIUbEsaZ9eSQVMVkwpkQqeQQIsRV4gFQXKSlFJE9aPHk97987-NOhDvrWNa2_yOYOh4ImUonPRk6t01nuHVb53eqfcMaeQd2nnXdp5l3Z-TrtlHk6MRsR_fg4UIGV_Dnx8QA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zhao, Yuan</creator><creator>Gong, Dekui</creator><creator>Wen, Shixi</creator><creator>Ding, Lei</creator><creator>Guo, Ge</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3555-1411</orcidid><orcidid>https://orcid.org/0000-0003-4752-4920</orcidid><orcidid>https://orcid.org/0000-0002-4285-2506</orcidid><orcidid>https://orcid.org/0000-0003-3458-2478</orcidid><orcidid>https://orcid.org/0000-0001-7997-5385</orcidid></search><sort><creationdate>20240701</creationdate><title>A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections</title><author>Zhao, Yuan ; Gong, Dekui ; Wen, Shixi ; Ding, Lei ; Guo, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ef1994da49858e04715055f392334d6a036f3aa5854902038e4be15be6fa16123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous vehicles</topic><topic>Cloud computing</topic><topic>Collaboration</topic><topic>Collision avoidance</topic><topic>Connected and automated vehicles</topic><topic>Data privacy</topic><topic>Energy efficiency</topic><topic>Fuel consumption</topic><topic>Fuel economy</topic><topic>Masking</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Privacy</topic><topic>privacy preserving</topic><topic>signal-free intersections</topic><topic>Traffic intersections</topic><topic>Trajectory</topic><topic>vehicle-cloud collaboration system</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Gong, Dekui</creatorcontrib><creatorcontrib>Wen, Shixi</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Guo, Ge</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yuan</au><au>Gong, Dekui</au><au>Wen, Shixi</au><au>Ding, Lei</au><au>Guo, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>25</volume><issue>7</issue><spage>6824</spage><epage>6835</epage><pages>6824-6835</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper proposes a privacy-preserving distributed collaboration (PPDC) scheme for connected autonomous vehicles (CAVs) to cross signal-free intersections based on the cloud, while securing the private data of the vehicles. Firstly, this paper converts the cooperation problem into a multi-objective problem that aims to improve the efficiency of traffic and fuel economy. Secondly, to prevent the privacy of the transmitted data of vehicles from being inferred by untrusted cloud servers or external attackers, an affine masking-based privacy strategy is designed. Specifically, the vehicle first uploads the encrypted state data to the cloud with the affine masking method. Then the cloud returns the control input by solving the newly constructed optimization problem, which is different but equivalent to the original problem. Then the vehicle calculates the real control input by the inverse affine masking mechanism. Simulation examples show that the proposed PPDC scheme can guarantee collision avoidance and the privacy protection of transmitted data of CAVs, improve traffic efficiency as well as fuel economy, and avoid extensive computation burden.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3346395</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3555-1411</orcidid><orcidid>https://orcid.org/0000-0003-4752-4920</orcidid><orcidid>https://orcid.org/0000-0002-4285-2506</orcidid><orcidid>https://orcid.org/0000-0003-3458-2478</orcidid><orcidid>https://orcid.org/0000-0001-7997-5385</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-07, Vol.25 (7), p.6824-6835 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2023_3346395 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomous vehicles Cloud computing Collaboration Collision avoidance Connected and automated vehicles Data privacy Energy efficiency Fuel consumption Fuel economy Masking Optimal control Optimization Privacy privacy preserving signal-free intersections Traffic intersections Trajectory vehicle-cloud collaboration system Vehicles |
title | A Privacy-Preserving-Based Distributed Collaborative Scheme for Connected Autonomous Vehicles at Multi-Lane Signal-Free Intersections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Privacy-Preserving-Based%20Distributed%20Collaborative%20Scheme%20for%20Connected%20Autonomous%20Vehicles%20at%20Multi-Lane%20Signal-Free%20Intersections&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhao,%20Yuan&rft.date=2024-07-01&rft.volume=25&rft.issue=7&rft.spage=6824&rft.epage=6835&rft.pages=6824-6835&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3346395&rft_dat=%3Cproquest_RIE%3E3075426652%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075426652&rft_id=info:pmid/&rft_ieee_id=10401008&rfr_iscdi=true |