Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling
Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behav...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2023-06, Vol.24 (6), p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 24 |
creator | Hu, Xiangwang Zheng, Zuduo Chen, Danjue Sun, Jian |
description | Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behavioral impact on traffic flow. In this study, we aim to characterize the empirical Car Following (CF) behaviors of the Waymo autonomous vehicle and compare its feature with human-driven Vehicles (HV), and capture such behavioral differences using the IDM CF model. Our main findings include: (a) AV is much safer than HV, based on our analysis using surrogate safety measures, as time headways and jam spacings of the AV are significantly larger than HV; (b) the response time of AV is also significantly larger than that of HV in response to various types of stimuli; (c) despite the short length of trajectories in the Waymo Open Dataset, we have confirmed that these trajectories are suitable for calibrating some of the IDM parameters; and the calibration results of IDM are consistent with our empirical analysis. Moreover, the modelling results, reveal that the proportion of string unstable behavior of AV is less than that of HV; and (d) for HV, there is generally no significant difference between following AV and following HV except a smaller jam spacing when following AV. Overall, we conclude that currently AV behaves in a conservative way to ensure its safety at the cost of traffic efficiency. |
doi_str_mv | 10.1109/TITS.2023.3258145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3258145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10078438</ieee_id><sourcerecordid>2821072341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-ce2d97e91f15d9ec2c68536752a821459534df1e91cfd51e71a7e32ea56241f03</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK7-AMFDwIOnrpmk6Ye3RXd1YWUPVj2WkE41S9vUpBX239vSPXiaYXjmneEh5BrYAoCl99kme1twxsVCcJlAKE_IDKRMAsYgOh17HgYpk-ycXHi_H6ahBJgRt-w729ja9p5-4LfRFd55uqlbpTtqG5o5VZZGP9BV3RpntKro6tcU2Gika2dr-qkOtaW7Fhv6pDrlsaOqKcaEaqA7Yxs_ga-2wKoyzdclOStV5fHqWOfkfb3KHl-C7e5587jcBpqnYRdo5EUaYwolyCJFzXWUSBHFkquED9-nUoRFCQOgy0ICxqBiFByVjHgIJRNzcjvlts7-9Oi7fG971wwncz4ksJiLEAYKJko7673DMm-dqZU75MDyUW0-qs1HtflR7bBzM-0YRPzHszgJRSL-AAajdRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821072341</pqid></control><display><type>article</type><title>Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Xiangwang ; Zheng, Zuduo ; Chen, Danjue ; Sun, Jian</creator><creatorcontrib>Hu, Xiangwang ; Zheng, Zuduo ; Chen, Danjue ; Sun, Jian</creatorcontrib><description>Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behavioral impact on traffic flow. In this study, we aim to characterize the empirical Car Following (CF) behaviors of the Waymo autonomous vehicle and compare its feature with human-driven Vehicles (HV), and capture such behavioral differences using the IDM CF model. Our main findings include: (a) AV is much safer than HV, based on our analysis using surrogate safety measures, as time headways and jam spacings of the AV are significantly larger than HV; (b) the response time of AV is also significantly larger than that of HV in response to various types of stimuli; (c) despite the short length of trajectories in the Waymo Open Dataset, we have confirmed that these trajectories are suitable for calibrating some of the IDM parameters; and the calibration results of IDM are consistent with our empirical analysis. Moreover, the modelling results, reveal that the proportion of string unstable behavior of AV is less than that of HV; and (d) for HV, there is generally no significant difference between following AV and following HV except a smaller jam spacing when following AV. Overall, we conclude that currently AV behaves in a conservative way to ensure its safety at the cost of traffic efficiency.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3258145</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Automobiles ; Autonomous vehicle ; Autonomous vehicles ; Behavior ; Behavioral sciences ; Car following ; Cruise control ; Datasets ; Empirical analysis ; Headways ; Laser radar ; Modelling ; Roads ; Safety ; Safety measures ; Time measurement ; traffic efficiency ; Traffic flow ; Traffic safety ; Trajectory ; wavelet analysis</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-06, Vol.24 (6), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-ce2d97e91f15d9ec2c68536752a821459534df1e91cfd51e71a7e32ea56241f03</citedby><cites>FETCH-LOGICAL-c294t-ce2d97e91f15d9ec2c68536752a821459534df1e91cfd51e71a7e32ea56241f03</cites><orcidid>0000-0002-5289-2106 ; 0000-0001-9272-3836 ; 0000-0001-5031-4938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10078438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10078438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Xiangwang</creatorcontrib><creatorcontrib>Zheng, Zuduo</creatorcontrib><creatorcontrib>Chen, Danjue</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><title>Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behavioral impact on traffic flow. In this study, we aim to characterize the empirical Car Following (CF) behaviors of the Waymo autonomous vehicle and compare its feature with human-driven Vehicles (HV), and capture such behavioral differences using the IDM CF model. Our main findings include: (a) AV is much safer than HV, based on our analysis using surrogate safety measures, as time headways and jam spacings of the AV are significantly larger than HV; (b) the response time of AV is also significantly larger than that of HV in response to various types of stimuli; (c) despite the short length of trajectories in the Waymo Open Dataset, we have confirmed that these trajectories are suitable for calibrating some of the IDM parameters; and the calibration results of IDM are consistent with our empirical analysis. Moreover, the modelling results, reveal that the proportion of string unstable behavior of AV is less than that of HV; and (d) for HV, there is generally no significant difference between following AV and following HV except a smaller jam spacing when following AV. Overall, we conclude that currently AV behaves in a conservative way to ensure its safety at the cost of traffic efficiency.</description><subject>Adaptive control</subject><subject>Automobiles</subject><subject>Autonomous vehicle</subject><subject>Autonomous vehicles</subject><subject>Behavior</subject><subject>Behavioral sciences</subject><subject>Car following</subject><subject>Cruise control</subject><subject>Datasets</subject><subject>Empirical analysis</subject><subject>Headways</subject><subject>Laser radar</subject><subject>Modelling</subject><subject>Roads</subject><subject>Safety</subject><subject>Safety measures</subject><subject>Time measurement</subject><subject>traffic efficiency</subject><subject>Traffic flow</subject><subject>Traffic safety</subject><subject>Trajectory</subject><subject>wavelet analysis</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LxDAQhoMouK7-AMFDwIOnrpmk6Ye3RXd1YWUPVj2WkE41S9vUpBX239vSPXiaYXjmneEh5BrYAoCl99kme1twxsVCcJlAKE_IDKRMAsYgOh17HgYpk-ycXHi_H6ahBJgRt-w729ja9p5-4LfRFd55uqlbpTtqG5o5VZZGP9BV3RpntKro6tcU2Gika2dr-qkOtaW7Fhv6pDrlsaOqKcaEaqA7Yxs_ga-2wKoyzdclOStV5fHqWOfkfb3KHl-C7e5587jcBpqnYRdo5EUaYwolyCJFzXWUSBHFkquED9-nUoRFCQOgy0ICxqBiFByVjHgIJRNzcjvlts7-9Oi7fG971wwncz4ksJiLEAYKJko7673DMm-dqZU75MDyUW0-qs1HtflR7bBzM-0YRPzHszgJRSL-AAajdRk</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hu, Xiangwang</creator><creator>Zheng, Zuduo</creator><creator>Chen, Danjue</creator><creator>Sun, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5289-2106</orcidid><orcidid>https://orcid.org/0000-0001-9272-3836</orcidid><orcidid>https://orcid.org/0000-0001-5031-4938</orcidid></search><sort><creationdate>20230601</creationdate><title>Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling</title><author>Hu, Xiangwang ; Zheng, Zuduo ; Chen, Danjue ; Sun, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-ce2d97e91f15d9ec2c68536752a821459534df1e91cfd51e71a7e32ea56241f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Automobiles</topic><topic>Autonomous vehicle</topic><topic>Autonomous vehicles</topic><topic>Behavior</topic><topic>Behavioral sciences</topic><topic>Car following</topic><topic>Cruise control</topic><topic>Datasets</topic><topic>Empirical analysis</topic><topic>Headways</topic><topic>Laser radar</topic><topic>Modelling</topic><topic>Roads</topic><topic>Safety</topic><topic>Safety measures</topic><topic>Time measurement</topic><topic>traffic efficiency</topic><topic>Traffic flow</topic><topic>Traffic safety</topic><topic>Trajectory</topic><topic>wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiangwang</creatorcontrib><creatorcontrib>Zheng, Zuduo</creatorcontrib><creatorcontrib>Chen, Danjue</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Xiangwang</au><au>Zheng, Zuduo</au><au>Chen, Danjue</au><au>Sun, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behavioral impact on traffic flow. In this study, we aim to characterize the empirical Car Following (CF) behaviors of the Waymo autonomous vehicle and compare its feature with human-driven Vehicles (HV), and capture such behavioral differences using the IDM CF model. Our main findings include: (a) AV is much safer than HV, based on our analysis using surrogate safety measures, as time headways and jam spacings of the AV are significantly larger than HV; (b) the response time of AV is also significantly larger than that of HV in response to various types of stimuli; (c) despite the short length of trajectories in the Waymo Open Dataset, we have confirmed that these trajectories are suitable for calibrating some of the IDM parameters; and the calibration results of IDM are consistent with our empirical analysis. Moreover, the modelling results, reveal that the proportion of string unstable behavior of AV is less than that of HV; and (d) for HV, there is generally no significant difference between following AV and following HV except a smaller jam spacing when following AV. Overall, we conclude that currently AV behaves in a conservative way to ensure its safety at the cost of traffic efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3258145</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5289-2106</orcidid><orcidid>https://orcid.org/0000-0001-9272-3836</orcidid><orcidid>https://orcid.org/0000-0001-5031-4938</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2023-06, Vol.24 (6), p.1-14 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2023_3258145 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Automobiles Autonomous vehicle Autonomous vehicles Behavior Behavioral sciences Car following Cruise control Datasets Empirical analysis Headways Laser radar Modelling Roads Safety Safety measures Time measurement traffic efficiency Traffic flow Traffic safety Trajectory wavelet analysis |
title | Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Vehicle's%20Impact%20on%20Traffic:%20Empirical%20Evidence%20From%20Waymo%20Open%20Dataset%20and%20Implications%20From%20Modelling&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Hu,%20Xiangwang&rft.date=2023-06-01&rft.volume=24&rft.issue=6&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3258145&rft_dat=%3Cproquest_RIE%3E2821072341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821072341&rft_id=info:pmid/&rft_ieee_id=10078438&rfr_iscdi=true |