Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling

Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2023-06, Vol.24 (6), p.1-14
Hauptverfasser: Hu, Xiangwang, Zheng, Zuduo, Chen, Danjue, Sun, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 6
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume 24
creator Hu, Xiangwang
Zheng, Zuduo
Chen, Danjue
Sun, Jian
description Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behavioral impact on traffic flow. In this study, we aim to characterize the empirical Car Following (CF) behaviors of the Waymo autonomous vehicle and compare its feature with human-driven Vehicles (HV), and capture such behavioral differences using the IDM CF model. Our main findings include: (a) AV is much safer than HV, based on our analysis using surrogate safety measures, as time headways and jam spacings of the AV are significantly larger than HV; (b) the response time of AV is also significantly larger than that of HV in response to various types of stimuli; (c) despite the short length of trajectories in the Waymo Open Dataset, we have confirmed that these trajectories are suitable for calibrating some of the IDM parameters; and the calibration results of IDM are consistent with our empirical analysis. Moreover, the modelling results, reveal that the proportion of string unstable behavior of AV is less than that of HV; and (d) for HV, there is generally no significant difference between following AV and following HV except a smaller jam spacing when following AV. Overall, we conclude that currently AV behaves in a conservative way to ensure its safety at the cost of traffic efficiency.
doi_str_mv 10.1109/TITS.2023.3258145
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3258145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10078438</ieee_id><sourcerecordid>2821072341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-ce2d97e91f15d9ec2c68536752a821459534df1e91cfd51e71a7e32ea56241f03</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK7-AMFDwIOnrpmk6Ye3RXd1YWUPVj2WkE41S9vUpBX239vSPXiaYXjmneEh5BrYAoCl99kme1twxsVCcJlAKE_IDKRMAsYgOh17HgYpk-ycXHi_H6ahBJgRt-w729ja9p5-4LfRFd55uqlbpTtqG5o5VZZGP9BV3RpntKro6tcU2Gika2dr-qkOtaW7Fhv6pDrlsaOqKcaEaqA7Yxs_ga-2wKoyzdclOStV5fHqWOfkfb3KHl-C7e5587jcBpqnYRdo5EUaYwolyCJFzXWUSBHFkquED9-nUoRFCQOgy0ICxqBiFByVjHgIJRNzcjvlts7-9Oi7fG971wwncz4ksJiLEAYKJko7673DMm-dqZU75MDyUW0-qs1HtflR7bBzM-0YRPzHszgJRSL-AAajdRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821072341</pqid></control><display><type>article</type><title>Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Xiangwang ; Zheng, Zuduo ; Chen, Danjue ; Sun, Jian</creator><creatorcontrib>Hu, Xiangwang ; Zheng, Zuduo ; Chen, Danjue ; Sun, Jian</creatorcontrib><description>Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behavioral impact on traffic flow. In this study, we aim to characterize the empirical Car Following (CF) behaviors of the Waymo autonomous vehicle and compare its feature with human-driven Vehicles (HV), and capture such behavioral differences using the IDM CF model. Our main findings include: (a) AV is much safer than HV, based on our analysis using surrogate safety measures, as time headways and jam spacings of the AV are significantly larger than HV; (b) the response time of AV is also significantly larger than that of HV in response to various types of stimuli; (c) despite the short length of trajectories in the Waymo Open Dataset, we have confirmed that these trajectories are suitable for calibrating some of the IDM parameters; and the calibration results of IDM are consistent with our empirical analysis. Moreover, the modelling results, reveal that the proportion of string unstable behavior of AV is less than that of HV; and (d) for HV, there is generally no significant difference between following AV and following HV except a smaller jam spacing when following AV. Overall, we conclude that currently AV behaves in a conservative way to ensure its safety at the cost of traffic efficiency.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3258145</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Automobiles ; Autonomous vehicle ; Autonomous vehicles ; Behavior ; Behavioral sciences ; Car following ; Cruise control ; Datasets ; Empirical analysis ; Headways ; Laser radar ; Modelling ; Roads ; Safety ; Safety measures ; Time measurement ; traffic efficiency ; Traffic flow ; Traffic safety ; Trajectory ; wavelet analysis</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-06, Vol.24 (6), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-ce2d97e91f15d9ec2c68536752a821459534df1e91cfd51e71a7e32ea56241f03</citedby><cites>FETCH-LOGICAL-c294t-ce2d97e91f15d9ec2c68536752a821459534df1e91cfd51e71a7e32ea56241f03</cites><orcidid>0000-0002-5289-2106 ; 0000-0001-9272-3836 ; 0000-0001-5031-4938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10078438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10078438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Xiangwang</creatorcontrib><creatorcontrib>Zheng, Zuduo</creatorcontrib><creatorcontrib>Chen, Danjue</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><title>Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behavioral impact on traffic flow. In this study, we aim to characterize the empirical Car Following (CF) behaviors of the Waymo autonomous vehicle and compare its feature with human-driven Vehicles (HV), and capture such behavioral differences using the IDM CF model. Our main findings include: (a) AV is much safer than HV, based on our analysis using surrogate safety measures, as time headways and jam spacings of the AV are significantly larger than HV; (b) the response time of AV is also significantly larger than that of HV in response to various types of stimuli; (c) despite the short length of trajectories in the Waymo Open Dataset, we have confirmed that these trajectories are suitable for calibrating some of the IDM parameters; and the calibration results of IDM are consistent with our empirical analysis. Moreover, the modelling results, reveal that the proportion of string unstable behavior of AV is less than that of HV; and (d) for HV, there is generally no significant difference between following AV and following HV except a smaller jam spacing when following AV. Overall, we conclude that currently AV behaves in a conservative way to ensure its safety at the cost of traffic efficiency.</description><subject>Adaptive control</subject><subject>Automobiles</subject><subject>Autonomous vehicle</subject><subject>Autonomous vehicles</subject><subject>Behavior</subject><subject>Behavioral sciences</subject><subject>Car following</subject><subject>Cruise control</subject><subject>Datasets</subject><subject>Empirical analysis</subject><subject>Headways</subject><subject>Laser radar</subject><subject>Modelling</subject><subject>Roads</subject><subject>Safety</subject><subject>Safety measures</subject><subject>Time measurement</subject><subject>traffic efficiency</subject><subject>Traffic flow</subject><subject>Traffic safety</subject><subject>Trajectory</subject><subject>wavelet analysis</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LxDAQhoMouK7-AMFDwIOnrpmk6Ye3RXd1YWUPVj2WkE41S9vUpBX239vSPXiaYXjmneEh5BrYAoCl99kme1twxsVCcJlAKE_IDKRMAsYgOh17HgYpk-ycXHi_H6ahBJgRt-w729ja9p5-4LfRFd55uqlbpTtqG5o5VZZGP9BV3RpntKro6tcU2Gika2dr-qkOtaW7Fhv6pDrlsaOqKcaEaqA7Yxs_ga-2wKoyzdclOStV5fHqWOfkfb3KHl-C7e5587jcBpqnYRdo5EUaYwolyCJFzXWUSBHFkquED9-nUoRFCQOgy0ICxqBiFByVjHgIJRNzcjvlts7-9Oi7fG971wwncz4ksJiLEAYKJko7673DMm-dqZU75MDyUW0-qs1HtflR7bBzM-0YRPzHszgJRSL-AAajdRk</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hu, Xiangwang</creator><creator>Zheng, Zuduo</creator><creator>Chen, Danjue</creator><creator>Sun, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5289-2106</orcidid><orcidid>https://orcid.org/0000-0001-9272-3836</orcidid><orcidid>https://orcid.org/0000-0001-5031-4938</orcidid></search><sort><creationdate>20230601</creationdate><title>Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling</title><author>Hu, Xiangwang ; Zheng, Zuduo ; Chen, Danjue ; Sun, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-ce2d97e91f15d9ec2c68536752a821459534df1e91cfd51e71a7e32ea56241f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Automobiles</topic><topic>Autonomous vehicle</topic><topic>Autonomous vehicles</topic><topic>Behavior</topic><topic>Behavioral sciences</topic><topic>Car following</topic><topic>Cruise control</topic><topic>Datasets</topic><topic>Empirical analysis</topic><topic>Headways</topic><topic>Laser radar</topic><topic>Modelling</topic><topic>Roads</topic><topic>Safety</topic><topic>Safety measures</topic><topic>Time measurement</topic><topic>traffic efficiency</topic><topic>Traffic flow</topic><topic>Traffic safety</topic><topic>Trajectory</topic><topic>wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xiangwang</creatorcontrib><creatorcontrib>Zheng, Zuduo</creatorcontrib><creatorcontrib>Chen, Danjue</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Xiangwang</au><au>Zheng, Zuduo</au><au>Chen, Danjue</au><au>Sun, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Previous empirical behavior analysis on Autonomous Vehicles (AV) mainly focused on vehicles with Adaptive Cruise Control (ACC) system due to the lack of high-level AV dataset. Recently released SAE Level-4 AV datasets such as the Waymo Open Dataset provide great opportunities to evaluate their behavioral impact on traffic flow. In this study, we aim to characterize the empirical Car Following (CF) behaviors of the Waymo autonomous vehicle and compare its feature with human-driven Vehicles (HV), and capture such behavioral differences using the IDM CF model. Our main findings include: (a) AV is much safer than HV, based on our analysis using surrogate safety measures, as time headways and jam spacings of the AV are significantly larger than HV; (b) the response time of AV is also significantly larger than that of HV in response to various types of stimuli; (c) despite the short length of trajectories in the Waymo Open Dataset, we have confirmed that these trajectories are suitable for calibrating some of the IDM parameters; and the calibration results of IDM are consistent with our empirical analysis. Moreover, the modelling results, reveal that the proportion of string unstable behavior of AV is less than that of HV; and (d) for HV, there is generally no significant difference between following AV and following HV except a smaller jam spacing when following AV. Overall, we conclude that currently AV behaves in a conservative way to ensure its safety at the cost of traffic efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3258145</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5289-2106</orcidid><orcidid>https://orcid.org/0000-0001-9272-3836</orcidid><orcidid>https://orcid.org/0000-0001-5031-4938</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2023-06, Vol.24 (6), p.1-14
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2023_3258145
source IEEE Electronic Library (IEL)
subjects Adaptive control
Automobiles
Autonomous vehicle
Autonomous vehicles
Behavior
Behavioral sciences
Car following
Cruise control
Datasets
Empirical analysis
Headways
Laser radar
Modelling
Roads
Safety
Safety measures
Time measurement
traffic efficiency
Traffic flow
Traffic safety
Trajectory
wavelet analysis
title Autonomous Vehicle's Impact on Traffic: Empirical Evidence From Waymo Open Dataset and Implications From Modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Vehicle's%20Impact%20on%20Traffic:%20Empirical%20Evidence%20From%20Waymo%20Open%20Dataset%20and%20Implications%20From%20Modelling&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Hu,%20Xiangwang&rft.date=2023-06-01&rft.volume=24&rft.issue=6&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3258145&rft_dat=%3Cproquest_RIE%3E2821072341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821072341&rft_id=info:pmid/&rft_ieee_id=10078438&rfr_iscdi=true