An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting
Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2023-05, Vol.24 (5), p.1-17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 24 |
creator | Chondrodima, Eva Pelekis, Nikos Pikrakis, Aggelos Theodoridis, Yannis |
description | Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework, based on Long-Short Term Memory (LSTM) Neural Networks, aiming to perform effective location forecasting in time horizons up to 60 minutes, even for vessels not recorded in the past. The proposed VLF framework is specially designed for handling vessel data by addressing some major GPS-related obstacles including variable sampling rate, sparse trajectories, and noise contained in such data. Our framework also learns by incorporating a novel trajectory data augmentation method to improve its predictive power. We validate VLF framework using three real-word datasets of vessels moving in different sea areas, comparing with various methods, and examining several aspects. Results prove VLF framework's generic nature, robustness regarding parameter changes, and superiority against state of the art in terms of prediction accuracy (higher than 30%) and computational effort. |
doi_str_mv | 10.1109/TITS.2023.3247993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3247993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10073952</ieee_id><sourcerecordid>2811727537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4e96638121583a2ae9bb89fb94f579c5656faac077ed609d23fafc37535b1ecc3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnPpqmuZxj1UH9gFVvQ5qdSOfWzKRD9u9t2S68Oh887znwIHRLyYRSoh6qRbWcMML4hLNUKsXP0IgKkSeE0Ox86FmaKCLIJbqKcd1vU0HpCL1PWzx3rrENtB0ul9ULfoV9MJu-dL8-fCePJsIKF8FsYZix8wF_QoywwaW3pmt8iwsfwJrYNe3XNbpwZhPh5lTH6KOYV7PnpHx7WsymZWKZSrskBZVlPKeMipwbZkDVda5crVInpLIiE5kzxhIpYZURtWLcGWe5FFzUFKzlY3R_vLsL_mcPsdNrvw9t_1KznFLJelT2FD1SNvgYAzi9C83WhIOmRA_i9CBOD-L0SVyfuTtmGgD4xxPJlWD8D7xNaTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811727537</pqid></control><display><type>article</type><title>An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting</title><source>IEEE Electronic Library (IEL)</source><creator>Chondrodima, Eva ; Pelekis, Nikos ; Pikrakis, Aggelos ; Theodoridis, Yannis</creator><creatorcontrib>Chondrodima, Eva ; Pelekis, Nikos ; Pikrakis, Aggelos ; Theodoridis, Yannis</creatorcontrib><description>Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework, based on Long-Short Term Memory (LSTM) Neural Networks, aiming to perform effective location forecasting in time horizons up to 60 minutes, even for vessels not recorded in the past. The proposed VLF framework is specially designed for handling vessel data by addressing some major GPS-related obstacles including variable sampling rate, sparse trajectories, and noise contained in such data. Our framework also learns by incorporating a novel trajectory data augmentation method to improve its predictive power. We validate VLF framework using three real-word datasets of vessels moving in different sea areas, comparing with various methods, and examining several aspects. Results prove VLF framework's generic nature, robustness regarding parameter changes, and superiority against state of the art in terms of prediction accuracy (higher than 30%) and computational effort.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3247993</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Data augmentation ; Forecasting ; Future location prediction ; Hidden Markov models ; long-short term memory neural networks ; maritime data ; moving objects trajectories ; Neural networks ; Parameter robustness ; Predictive models ; Sea vessels ; Spatiotemporal phenomena ; Time series analysis ; Trajectories ; Trajectory ; trajectory data augmentation ; vessel location forecasting</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-05, Vol.24 (5), p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-4e96638121583a2ae9bb89fb94f579c5656faac077ed609d23fafc37535b1ecc3</citedby><cites>FETCH-LOGICAL-c294t-4e96638121583a2ae9bb89fb94f579c5656faac077ed609d23fafc37535b1ecc3</cites><orcidid>0000-0001-7205-5703 ; 0000-0001-7355-327X ; 0000-0002-4433-0525 ; 0000-0003-2589-7881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10073952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10073952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chondrodima, Eva</creatorcontrib><creatorcontrib>Pelekis, Nikos</creatorcontrib><creatorcontrib>Pikrakis, Aggelos</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><title>An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework, based on Long-Short Term Memory (LSTM) Neural Networks, aiming to perform effective location forecasting in time horizons up to 60 minutes, even for vessels not recorded in the past. The proposed VLF framework is specially designed for handling vessel data by addressing some major GPS-related obstacles including variable sampling rate, sparse trajectories, and noise contained in such data. Our framework also learns by incorporating a novel trajectory data augmentation method to improve its predictive power. We validate VLF framework using three real-word datasets of vessels moving in different sea areas, comparing with various methods, and examining several aspects. Results prove VLF framework's generic nature, robustness regarding parameter changes, and superiority against state of the art in terms of prediction accuracy (higher than 30%) and computational effort.</description><subject>Artificial neural networks</subject><subject>Data augmentation</subject><subject>Forecasting</subject><subject>Future location prediction</subject><subject>Hidden Markov models</subject><subject>long-short term memory neural networks</subject><subject>maritime data</subject><subject>moving objects trajectories</subject><subject>Neural networks</subject><subject>Parameter robustness</subject><subject>Predictive models</subject><subject>Sea vessels</subject><subject>Spatiotemporal phenomena</subject><subject>Time series analysis</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>trajectory data augmentation</subject><subject>vessel location forecasting</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnPpqmuZxj1UH9gFVvQ5qdSOfWzKRD9u9t2S68Oh887znwIHRLyYRSoh6qRbWcMML4hLNUKsXP0IgKkSeE0Ox86FmaKCLIJbqKcd1vU0HpCL1PWzx3rrENtB0ul9ULfoV9MJu-dL8-fCePJsIKF8FsYZix8wF_QoywwaW3pmt8iwsfwJrYNe3XNbpwZhPh5lTH6KOYV7PnpHx7WsymZWKZSrskBZVlPKeMipwbZkDVda5crVInpLIiE5kzxhIpYZURtWLcGWe5FFzUFKzlY3R_vLsL_mcPsdNrvw9t_1KznFLJelT2FD1SNvgYAzi9C83WhIOmRA_i9CBOD-L0SVyfuTtmGgD4xxPJlWD8D7xNaTM</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Chondrodima, Eva</creator><creator>Pelekis, Nikos</creator><creator>Pikrakis, Aggelos</creator><creator>Theodoridis, Yannis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7205-5703</orcidid><orcidid>https://orcid.org/0000-0001-7355-327X</orcidid><orcidid>https://orcid.org/0000-0002-4433-0525</orcidid><orcidid>https://orcid.org/0000-0003-2589-7881</orcidid></search><sort><creationdate>20230501</creationdate><title>An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting</title><author>Chondrodima, Eva ; Pelekis, Nikos ; Pikrakis, Aggelos ; Theodoridis, Yannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4e96638121583a2ae9bb89fb94f579c5656faac077ed609d23fafc37535b1ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Data augmentation</topic><topic>Forecasting</topic><topic>Future location prediction</topic><topic>Hidden Markov models</topic><topic>long-short term memory neural networks</topic><topic>maritime data</topic><topic>moving objects trajectories</topic><topic>Neural networks</topic><topic>Parameter robustness</topic><topic>Predictive models</topic><topic>Sea vessels</topic><topic>Spatiotemporal phenomena</topic><topic>Time series analysis</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>trajectory data augmentation</topic><topic>vessel location forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chondrodima, Eva</creatorcontrib><creatorcontrib>Pelekis, Nikos</creatorcontrib><creatorcontrib>Pikrakis, Aggelos</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chondrodima, Eva</au><au>Pelekis, Nikos</au><au>Pikrakis, Aggelos</au><au>Theodoridis, Yannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>24</volume><issue>5</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework, based on Long-Short Term Memory (LSTM) Neural Networks, aiming to perform effective location forecasting in time horizons up to 60 minutes, even for vessels not recorded in the past. The proposed VLF framework is specially designed for handling vessel data by addressing some major GPS-related obstacles including variable sampling rate, sparse trajectories, and noise contained in such data. Our framework also learns by incorporating a novel trajectory data augmentation method to improve its predictive power. We validate VLF framework using three real-word datasets of vessels moving in different sea areas, comparing with various methods, and examining several aspects. Results prove VLF framework's generic nature, robustness regarding parameter changes, and superiority against state of the art in terms of prediction accuracy (higher than 30%) and computational effort.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3247993</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7205-5703</orcidid><orcidid>https://orcid.org/0000-0001-7355-327X</orcidid><orcidid>https://orcid.org/0000-0002-4433-0525</orcidid><orcidid>https://orcid.org/0000-0003-2589-7881</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2023-05, Vol.24 (5), p.1-17 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2023_3247993 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Data augmentation Forecasting Future location prediction Hidden Markov models long-short term memory neural networks maritime data moving objects trajectories Neural networks Parameter robustness Predictive models Sea vessels Spatiotemporal phenomena Time series analysis Trajectories Trajectory trajectory data augmentation vessel location forecasting |
title | An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20LSTM%20Neural%20Network-Based%20Framework%20for%20Vessel%20Location%20Forecasting&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chondrodima,%20Eva&rft.date=2023-05-01&rft.volume=24&rft.issue=5&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3247993&rft_dat=%3Cproquest_RIE%3E2811727537%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811727537&rft_id=info:pmid/&rft_ieee_id=10073952&rfr_iscdi=true |