An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting

Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2023-05, Vol.24 (5), p.1-17
Hauptverfasser: Chondrodima, Eva, Pelekis, Nikos, Pikrakis, Aggelos, Theodoridis, Yannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 5
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume 24
creator Chondrodima, Eva
Pelekis, Nikos
Pikrakis, Aggelos
Theodoridis, Yannis
description Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework, based on Long-Short Term Memory (LSTM) Neural Networks, aiming to perform effective location forecasting in time horizons up to 60 minutes, even for vessels not recorded in the past. The proposed VLF framework is specially designed for handling vessel data by addressing some major GPS-related obstacles including variable sampling rate, sparse trajectories, and noise contained in such data. Our framework also learns by incorporating a novel trajectory data augmentation method to improve its predictive power. We validate VLF framework using three real-word datasets of vessels moving in different sea areas, comparing with various methods, and examining several aspects. Results prove VLF framework's generic nature, robustness regarding parameter changes, and superiority against state of the art in terms of prediction accuracy (higher than 30%) and computational effort.
doi_str_mv 10.1109/TITS.2023.3247993
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3247993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10073952</ieee_id><sourcerecordid>2811727537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4e96638121583a2ae9bb89fb94f579c5656faac077ed609d23fafc37535b1ecc3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnPpqmuZxj1UH9gFVvQ5qdSOfWzKRD9u9t2S68Oh887znwIHRLyYRSoh6qRbWcMML4hLNUKsXP0IgKkSeE0Ox86FmaKCLIJbqKcd1vU0HpCL1PWzx3rrENtB0ul9ULfoV9MJu-dL8-fCePJsIKF8FsYZix8wF_QoywwaW3pmt8iwsfwJrYNe3XNbpwZhPh5lTH6KOYV7PnpHx7WsymZWKZSrskBZVlPKeMipwbZkDVda5crVInpLIiE5kzxhIpYZURtWLcGWe5FFzUFKzlY3R_vLsL_mcPsdNrvw9t_1KznFLJelT2FD1SNvgYAzi9C83WhIOmRA_i9CBOD-L0SVyfuTtmGgD4xxPJlWD8D7xNaTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811727537</pqid></control><display><type>article</type><title>An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting</title><source>IEEE Electronic Library (IEL)</source><creator>Chondrodima, Eva ; Pelekis, Nikos ; Pikrakis, Aggelos ; Theodoridis, Yannis</creator><creatorcontrib>Chondrodima, Eva ; Pelekis, Nikos ; Pikrakis, Aggelos ; Theodoridis, Yannis</creatorcontrib><description>Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework, based on Long-Short Term Memory (LSTM) Neural Networks, aiming to perform effective location forecasting in time horizons up to 60 minutes, even for vessels not recorded in the past. The proposed VLF framework is specially designed for handling vessel data by addressing some major GPS-related obstacles including variable sampling rate, sparse trajectories, and noise contained in such data. Our framework also learns by incorporating a novel trajectory data augmentation method to improve its predictive power. We validate VLF framework using three real-word datasets of vessels moving in different sea areas, comparing with various methods, and examining several aspects. Results prove VLF framework's generic nature, robustness regarding parameter changes, and superiority against state of the art in terms of prediction accuracy (higher than 30%) and computational effort.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3247993</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Data augmentation ; Forecasting ; Future location prediction ; Hidden Markov models ; long-short term memory neural networks ; maritime data ; moving objects trajectories ; Neural networks ; Parameter robustness ; Predictive models ; Sea vessels ; Spatiotemporal phenomena ; Time series analysis ; Trajectories ; Trajectory ; trajectory data augmentation ; vessel location forecasting</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-05, Vol.24 (5), p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-4e96638121583a2ae9bb89fb94f579c5656faac077ed609d23fafc37535b1ecc3</citedby><cites>FETCH-LOGICAL-c294t-4e96638121583a2ae9bb89fb94f579c5656faac077ed609d23fafc37535b1ecc3</cites><orcidid>0000-0001-7205-5703 ; 0000-0001-7355-327X ; 0000-0002-4433-0525 ; 0000-0003-2589-7881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10073952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10073952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chondrodima, Eva</creatorcontrib><creatorcontrib>Pelekis, Nikos</creatorcontrib><creatorcontrib>Pikrakis, Aggelos</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><title>An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework, based on Long-Short Term Memory (LSTM) Neural Networks, aiming to perform effective location forecasting in time horizons up to 60 minutes, even for vessels not recorded in the past. The proposed VLF framework is specially designed for handling vessel data by addressing some major GPS-related obstacles including variable sampling rate, sparse trajectories, and noise contained in such data. Our framework also learns by incorporating a novel trajectory data augmentation method to improve its predictive power. We validate VLF framework using three real-word datasets of vessels moving in different sea areas, comparing with various methods, and examining several aspects. Results prove VLF framework's generic nature, robustness regarding parameter changes, and superiority against state of the art in terms of prediction accuracy (higher than 30%) and computational effort.</description><subject>Artificial neural networks</subject><subject>Data augmentation</subject><subject>Forecasting</subject><subject>Future location prediction</subject><subject>Hidden Markov models</subject><subject>long-short term memory neural networks</subject><subject>maritime data</subject><subject>moving objects trajectories</subject><subject>Neural networks</subject><subject>Parameter robustness</subject><subject>Predictive models</subject><subject>Sea vessels</subject><subject>Spatiotemporal phenomena</subject><subject>Time series analysis</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>trajectory data augmentation</subject><subject>vessel location forecasting</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnPpqmuZxj1UH9gFVvQ5qdSOfWzKRD9u9t2S68Oh887znwIHRLyYRSoh6qRbWcMML4hLNUKsXP0IgKkSeE0Ox86FmaKCLIJbqKcd1vU0HpCL1PWzx3rrENtB0ul9ULfoV9MJu-dL8-fCePJsIKF8FsYZix8wF_QoywwaW3pmt8iwsfwJrYNe3XNbpwZhPh5lTH6KOYV7PnpHx7WsymZWKZSrskBZVlPKeMipwbZkDVda5crVInpLIiE5kzxhIpYZURtWLcGWe5FFzUFKzlY3R_vLsL_mcPsdNrvw9t_1KznFLJelT2FD1SNvgYAzi9C83WhIOmRA_i9CBOD-L0SVyfuTtmGgD4xxPJlWD8D7xNaTM</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Chondrodima, Eva</creator><creator>Pelekis, Nikos</creator><creator>Pikrakis, Aggelos</creator><creator>Theodoridis, Yannis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7205-5703</orcidid><orcidid>https://orcid.org/0000-0001-7355-327X</orcidid><orcidid>https://orcid.org/0000-0002-4433-0525</orcidid><orcidid>https://orcid.org/0000-0003-2589-7881</orcidid></search><sort><creationdate>20230501</creationdate><title>An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting</title><author>Chondrodima, Eva ; Pelekis, Nikos ; Pikrakis, Aggelos ; Theodoridis, Yannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4e96638121583a2ae9bb89fb94f579c5656faac077ed609d23fafc37535b1ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Data augmentation</topic><topic>Forecasting</topic><topic>Future location prediction</topic><topic>Hidden Markov models</topic><topic>long-short term memory neural networks</topic><topic>maritime data</topic><topic>moving objects trajectories</topic><topic>Neural networks</topic><topic>Parameter robustness</topic><topic>Predictive models</topic><topic>Sea vessels</topic><topic>Spatiotemporal phenomena</topic><topic>Time series analysis</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>trajectory data augmentation</topic><topic>vessel location forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chondrodima, Eva</creatorcontrib><creatorcontrib>Pelekis, Nikos</creatorcontrib><creatorcontrib>Pikrakis, Aggelos</creatorcontrib><creatorcontrib>Theodoridis, Yannis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chondrodima, Eva</au><au>Pelekis, Nikos</au><au>Pikrakis, Aggelos</au><au>Theodoridis, Yannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>24</volume><issue>5</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Forecasting vessel locations is of major importance in the maritime domain, with applications in safety, logistics, etc. Nowadays, vessel tracking has become possible largely due to the increased GPS-based data availability. This paper introduces a novel Vessel Location Forecasting (VLF) framework, based on Long-Short Term Memory (LSTM) Neural Networks, aiming to perform effective location forecasting in time horizons up to 60 minutes, even for vessels not recorded in the past. The proposed VLF framework is specially designed for handling vessel data by addressing some major GPS-related obstacles including variable sampling rate, sparse trajectories, and noise contained in such data. Our framework also learns by incorporating a novel trajectory data augmentation method to improve its predictive power. We validate VLF framework using three real-word datasets of vessels moving in different sea areas, comparing with various methods, and examining several aspects. Results prove VLF framework's generic nature, robustness regarding parameter changes, and superiority against state of the art in terms of prediction accuracy (higher than 30%) and computational effort.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3247993</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7205-5703</orcidid><orcidid>https://orcid.org/0000-0001-7355-327X</orcidid><orcidid>https://orcid.org/0000-0002-4433-0525</orcidid><orcidid>https://orcid.org/0000-0003-2589-7881</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2023-05, Vol.24 (5), p.1-17
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2023_3247993
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Data augmentation
Forecasting
Future location prediction
Hidden Markov models
long-short term memory neural networks
maritime data
moving objects trajectories
Neural networks
Parameter robustness
Predictive models
Sea vessels
Spatiotemporal phenomena
Time series analysis
Trajectories
Trajectory
trajectory data augmentation
vessel location forecasting
title An Efficient LSTM Neural Network-Based Framework for Vessel Location Forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20LSTM%20Neural%20Network-Based%20Framework%20for%20Vessel%20Location%20Forecasting&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chondrodima,%20Eva&rft.date=2023-05-01&rft.volume=24&rft.issue=5&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3247993&rft_dat=%3Cproquest_RIE%3E2811727537%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811727537&rft_id=info:pmid/&rft_ieee_id=10073952&rfr_iscdi=true