3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions
Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2023-04, Vol.24 (4), p.4293-4305 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4305 |
---|---|
container_issue | 4 |
container_start_page | 4293 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 24 |
creator | Huang, Shih-Chia Jaw, Da-Wei Hoang, Quoc-Viet Le, Trung-Hieu |
description | Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors due to the decrease in visibility. To address above insufficiency, we propose a new and effective approach, named 3FL-Net, to elevate the performance of lightweight object detectors in the presence of rain. Our approach fulfills the goal by closely incorporating four subnetworks, namely feature enhancement subnetwork, feature extraction subnetwork, feature adaptation subnetwork, and lightweight detection subnetwork. The lightweight detection subnetwork achieved the accuracy improvement by learning diverse features from the feature enhancement subnetwork and feature extraction subnetwork via the feature adaptation subnetwork. To further drive the development in object detection induced by rain, we introduce a large-scale driving dataset, called iRain. The full iRain consists of 17,950 real-world rain images, which covers most of the driving scenarios and 85,081 instances explaining five prevalent object classes. Experiment results on divergent rain datasets expose that our 3FL-Net considerably improves the performance of lightweight detectors and surpasses that of the combination models between rain removal and object detection methods. |
doi_str_mv | 10.1109/TITS.2023.3235339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3235339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10050384</ieee_id><sourcerecordid>2792133987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d499903ec3b385b9df01e8f4efdb3007b5ee76596010f552fddcb118eed2301c3</originalsourceid><addsrcrecordid>eNpNkFtLwzAYhosoOKc_QPAi4HVnDs3aeDfmpoOiohMvQ5t-2TJsMtNM2b83Zbvw5ju8vN-BJ0muCR4RgsXdcrF8H1FM2YhRxhkTJ8mAcF6kGJPxaV_TLBWY4_Pkous2Uc04IYOkZfMyfYZwjyYWzbQ2yoANaLLdelepNdLOo0Ubmx9jV-gVfBTayipATqPSrNbhF_qIHiCACs53yFj0Vhm7R59QhTV4NHW2McE4210mZ7r66uDqmIfJx3y2nD6l5cvjYjopU0VFFtImE0JgBorVrOC1aDQmUOgMdFMzjPOaA-RjLsaYYM051U2jakIKgIYyTBQbJreHvfHx7x10QW7cztt4UtJcUBL5FHl0kYNLedd1HrTcetNWfi8Jlj1V2VOVPVV5pBpnbg4zBgD--SNZVmTsD2Ubc-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792133987</pqid></control><display><type>article</type><title>3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Shih-Chia ; Jaw, Da-Wei ; Hoang, Quoc-Viet ; Le, Trung-Hieu</creator><creatorcontrib>Huang, Shih-Chia ; Jaw, Da-Wei ; Hoang, Quoc-Viet ; Le, Trung-Hieu</creatorcontrib><description>Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors due to the decrease in visibility. To address above insufficiency, we propose a new and effective approach, named 3FL-Net, to elevate the performance of lightweight object detectors in the presence of rain. Our approach fulfills the goal by closely incorporating four subnetworks, namely feature enhancement subnetwork, feature extraction subnetwork, feature adaptation subnetwork, and lightweight detection subnetwork. The lightweight detection subnetwork achieved the accuracy improvement by learning diverse features from the feature enhancement subnetwork and feature extraction subnetwork via the feature adaptation subnetwork. To further drive the development in object detection induced by rain, we introduce a large-scale driving dataset, called iRain. The full iRain consists of 17,950 real-world rain images, which covers most of the driving scenarios and 85,081 instances explaining five prevalent object classes. Experiment results on divergent rain datasets expose that our 3FL-Net considerably improves the performance of lightweight detectors and surpasses that of the combination models between rain removal and object detection methods.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3235339</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; CNN ; Datasets ; Detectors ; Feature extraction ; Lightweight ; lightweight detector ; Meteorology ; Object detection ; Object recognition ; Performance degradation ; Performance enhancement ; Rain ; Sensors ; Task analysis ; Training ; Weather</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-04, Vol.24 (4), p.4293-4305</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d499903ec3b385b9df01e8f4efdb3007b5ee76596010f552fddcb118eed2301c3</citedby><cites>FETCH-LOGICAL-c294t-d499903ec3b385b9df01e8f4efdb3007b5ee76596010f552fddcb118eed2301c3</cites><orcidid>0000-0002-9903-5910 ; 0000-0003-2515-9213 ; 0000-0001-5766-4199 ; 0000-0002-6896-3415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10050384$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10050384$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Shih-Chia</creatorcontrib><creatorcontrib>Jaw, Da-Wei</creatorcontrib><creatorcontrib>Hoang, Quoc-Viet</creatorcontrib><creatorcontrib>Le, Trung-Hieu</creatorcontrib><title>3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors due to the decrease in visibility. To address above insufficiency, we propose a new and effective approach, named 3FL-Net, to elevate the performance of lightweight object detectors in the presence of rain. Our approach fulfills the goal by closely incorporating four subnetworks, namely feature enhancement subnetwork, feature extraction subnetwork, feature adaptation subnetwork, and lightweight detection subnetwork. The lightweight detection subnetwork achieved the accuracy improvement by learning diverse features from the feature enhancement subnetwork and feature extraction subnetwork via the feature adaptation subnetwork. To further drive the development in object detection induced by rain, we introduce a large-scale driving dataset, called iRain. The full iRain consists of 17,950 real-world rain images, which covers most of the driving scenarios and 85,081 instances explaining five prevalent object classes. Experiment results on divergent rain datasets expose that our 3FL-Net considerably improves the performance of lightweight detectors and surpasses that of the combination models between rain removal and object detection methods.</description><subject>Adaptation</subject><subject>CNN</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Lightweight</subject><subject>lightweight detector</subject><subject>Meteorology</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Performance degradation</subject><subject>Performance enhancement</subject><subject>Rain</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>Training</subject><subject>Weather</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLwzAYhosoOKc_QPAi4HVnDs3aeDfmpoOiohMvQ5t-2TJsMtNM2b83Zbvw5ju8vN-BJ0muCR4RgsXdcrF8H1FM2YhRxhkTJ8mAcF6kGJPxaV_TLBWY4_Pkous2Uc04IYOkZfMyfYZwjyYWzbQ2yoANaLLdelepNdLOo0Ubmx9jV-gVfBTayipATqPSrNbhF_qIHiCACs53yFj0Vhm7R59QhTV4NHW2McE4210mZ7r66uDqmIfJx3y2nD6l5cvjYjopU0VFFtImE0JgBorVrOC1aDQmUOgMdFMzjPOaA-RjLsaYYM051U2jakIKgIYyTBQbJreHvfHx7x10QW7cztt4UtJcUBL5FHl0kYNLedd1HrTcetNWfi8Jlj1V2VOVPVV5pBpnbg4zBgD--SNZVmTsD2Ubc-E</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Huang, Shih-Chia</creator><creator>Jaw, Da-Wei</creator><creator>Hoang, Quoc-Viet</creator><creator>Le, Trung-Hieu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9903-5910</orcidid><orcidid>https://orcid.org/0000-0003-2515-9213</orcidid><orcidid>https://orcid.org/0000-0001-5766-4199</orcidid><orcidid>https://orcid.org/0000-0002-6896-3415</orcidid></search><sort><creationdate>20230401</creationdate><title>3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions</title><author>Huang, Shih-Chia ; Jaw, Da-Wei ; Hoang, Quoc-Viet ; Le, Trung-Hieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d499903ec3b385b9df01e8f4efdb3007b5ee76596010f552fddcb118eed2301c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>CNN</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Lightweight</topic><topic>lightweight detector</topic><topic>Meteorology</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Performance degradation</topic><topic>Performance enhancement</topic><topic>Rain</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>Training</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shih-Chia</creatorcontrib><creatorcontrib>Jaw, Da-Wei</creatorcontrib><creatorcontrib>Hoang, Quoc-Viet</creatorcontrib><creatorcontrib>Le, Trung-Hieu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Shih-Chia</au><au>Jaw, Da-Wei</au><au>Hoang, Quoc-Viet</au><au>Le, Trung-Hieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>4293</spage><epage>4305</epage><pages>4293-4305</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors due to the decrease in visibility. To address above insufficiency, we propose a new and effective approach, named 3FL-Net, to elevate the performance of lightweight object detectors in the presence of rain. Our approach fulfills the goal by closely incorporating four subnetworks, namely feature enhancement subnetwork, feature extraction subnetwork, feature adaptation subnetwork, and lightweight detection subnetwork. The lightweight detection subnetwork achieved the accuracy improvement by learning diverse features from the feature enhancement subnetwork and feature extraction subnetwork via the feature adaptation subnetwork. To further drive the development in object detection induced by rain, we introduce a large-scale driving dataset, called iRain. The full iRain consists of 17,950 real-world rain images, which covers most of the driving scenarios and 85,081 instances explaining five prevalent object classes. Experiment results on divergent rain datasets expose that our 3FL-Net considerably improves the performance of lightweight detectors and surpasses that of the combination models between rain removal and object detection methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3235339</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9903-5910</orcidid><orcidid>https://orcid.org/0000-0003-2515-9213</orcidid><orcidid>https://orcid.org/0000-0001-5766-4199</orcidid><orcidid>https://orcid.org/0000-0002-6896-3415</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2023-04, Vol.24 (4), p.4293-4305 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2023_3235339 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation CNN Datasets Detectors Feature extraction Lightweight lightweight detector Meteorology Object detection Object recognition Performance degradation Performance enhancement Rain Sensors Task analysis Training Weather |
title | 3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3FL-Net:%20An%20Efficient%20Approach%20for%20Improving%20Performance%20of%20Lightweight%20Detectors%20in%20Rainy%20Weather%20Conditions&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Huang,%20Shih-Chia&rft.date=2023-04-01&rft.volume=24&rft.issue=4&rft.spage=4293&rft.epage=4305&rft.pages=4293-4305&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3235339&rft_dat=%3Cproquest_RIE%3E2792133987%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792133987&rft_id=info:pmid/&rft_ieee_id=10050384&rfr_iscdi=true |