3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions

Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2023-04, Vol.24 (4), p.4293-4305
Hauptverfasser: Huang, Shih-Chia, Jaw, Da-Wei, Hoang, Quoc-Viet, Le, Trung-Hieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4305
container_issue 4
container_start_page 4293
container_title IEEE transactions on intelligent transportation systems
container_volume 24
creator Huang, Shih-Chia
Jaw, Da-Wei
Hoang, Quoc-Viet
Le, Trung-Hieu
description Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors due to the decrease in visibility. To address above insufficiency, we propose a new and effective approach, named 3FL-Net, to elevate the performance of lightweight object detectors in the presence of rain. Our approach fulfills the goal by closely incorporating four subnetworks, namely feature enhancement subnetwork, feature extraction subnetwork, feature adaptation subnetwork, and lightweight detection subnetwork. The lightweight detection subnetwork achieved the accuracy improvement by learning diverse features from the feature enhancement subnetwork and feature extraction subnetwork via the feature adaptation subnetwork. To further drive the development in object detection induced by rain, we introduce a large-scale driving dataset, called iRain. The full iRain consists of 17,950 real-world rain images, which covers most of the driving scenarios and 85,081 instances explaining five prevalent object classes. Experiment results on divergent rain datasets expose that our 3FL-Net considerably improves the performance of lightweight detectors and surpasses that of the combination models between rain removal and object detection methods.
doi_str_mv 10.1109/TITS.2023.3235339
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3235339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10050384</ieee_id><sourcerecordid>2792133987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d499903ec3b385b9df01e8f4efdb3007b5ee76596010f552fddcb118eed2301c3</originalsourceid><addsrcrecordid>eNpNkFtLwzAYhosoOKc_QPAi4HVnDs3aeDfmpoOiohMvQ5t-2TJsMtNM2b83Zbvw5ju8vN-BJ0muCR4RgsXdcrF8H1FM2YhRxhkTJ8mAcF6kGJPxaV_TLBWY4_Pkous2Uc04IYOkZfMyfYZwjyYWzbQ2yoANaLLdelepNdLOo0Ubmx9jV-gVfBTayipATqPSrNbhF_qIHiCACs53yFj0Vhm7R59QhTV4NHW2McE4210mZ7r66uDqmIfJx3y2nD6l5cvjYjopU0VFFtImE0JgBorVrOC1aDQmUOgMdFMzjPOaA-RjLsaYYM051U2jakIKgIYyTBQbJreHvfHx7x10QW7cztt4UtJcUBL5FHl0kYNLedd1HrTcetNWfi8Jlj1V2VOVPVV5pBpnbg4zBgD--SNZVmTsD2Ubc-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792133987</pqid></control><display><type>article</type><title>3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Shih-Chia ; Jaw, Da-Wei ; Hoang, Quoc-Viet ; Le, Trung-Hieu</creator><creatorcontrib>Huang, Shih-Chia ; Jaw, Da-Wei ; Hoang, Quoc-Viet ; Le, Trung-Hieu</creatorcontrib><description>Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors due to the decrease in visibility. To address above insufficiency, we propose a new and effective approach, named 3FL-Net, to elevate the performance of lightweight object detectors in the presence of rain. Our approach fulfills the goal by closely incorporating four subnetworks, namely feature enhancement subnetwork, feature extraction subnetwork, feature adaptation subnetwork, and lightweight detection subnetwork. The lightweight detection subnetwork achieved the accuracy improvement by learning diverse features from the feature enhancement subnetwork and feature extraction subnetwork via the feature adaptation subnetwork. To further drive the development in object detection induced by rain, we introduce a large-scale driving dataset, called iRain. The full iRain consists of 17,950 real-world rain images, which covers most of the driving scenarios and 85,081 instances explaining five prevalent object classes. Experiment results on divergent rain datasets expose that our 3FL-Net considerably improves the performance of lightweight detectors and surpasses that of the combination models between rain removal and object detection methods.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3235339</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; CNN ; Datasets ; Detectors ; Feature extraction ; Lightweight ; lightweight detector ; Meteorology ; Object detection ; Object recognition ; Performance degradation ; Performance enhancement ; Rain ; Sensors ; Task analysis ; Training ; Weather</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-04, Vol.24 (4), p.4293-4305</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d499903ec3b385b9df01e8f4efdb3007b5ee76596010f552fddcb118eed2301c3</citedby><cites>FETCH-LOGICAL-c294t-d499903ec3b385b9df01e8f4efdb3007b5ee76596010f552fddcb118eed2301c3</cites><orcidid>0000-0002-9903-5910 ; 0000-0003-2515-9213 ; 0000-0001-5766-4199 ; 0000-0002-6896-3415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10050384$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10050384$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Shih-Chia</creatorcontrib><creatorcontrib>Jaw, Da-Wei</creatorcontrib><creatorcontrib>Hoang, Quoc-Viet</creatorcontrib><creatorcontrib>Le, Trung-Hieu</creatorcontrib><title>3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors due to the decrease in visibility. To address above insufficiency, we propose a new and effective approach, named 3FL-Net, to elevate the performance of lightweight object detectors in the presence of rain. Our approach fulfills the goal by closely incorporating four subnetworks, namely feature enhancement subnetwork, feature extraction subnetwork, feature adaptation subnetwork, and lightweight detection subnetwork. The lightweight detection subnetwork achieved the accuracy improvement by learning diverse features from the feature enhancement subnetwork and feature extraction subnetwork via the feature adaptation subnetwork. To further drive the development in object detection induced by rain, we introduce a large-scale driving dataset, called iRain. The full iRain consists of 17,950 real-world rain images, which covers most of the driving scenarios and 85,081 instances explaining five prevalent object classes. Experiment results on divergent rain datasets expose that our 3FL-Net considerably improves the performance of lightweight detectors and surpasses that of the combination models between rain removal and object detection methods.</description><subject>Adaptation</subject><subject>CNN</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Lightweight</subject><subject>lightweight detector</subject><subject>Meteorology</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Performance degradation</subject><subject>Performance enhancement</subject><subject>Rain</subject><subject>Sensors</subject><subject>Task analysis</subject><subject>Training</subject><subject>Weather</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFtLwzAYhosoOKc_QPAi4HVnDs3aeDfmpoOiohMvQ5t-2TJsMtNM2b83Zbvw5ju8vN-BJ0muCR4RgsXdcrF8H1FM2YhRxhkTJ8mAcF6kGJPxaV_TLBWY4_Pkous2Uc04IYOkZfMyfYZwjyYWzbQ2yoANaLLdelepNdLOo0Ubmx9jV-gVfBTayipATqPSrNbhF_qIHiCACs53yFj0Vhm7R59QhTV4NHW2McE4210mZ7r66uDqmIfJx3y2nD6l5cvjYjopU0VFFtImE0JgBorVrOC1aDQmUOgMdFMzjPOaA-RjLsaYYM051U2jakIKgIYyTBQbJreHvfHx7x10QW7cztt4UtJcUBL5FHl0kYNLedd1HrTcetNWfi8Jlj1V2VOVPVV5pBpnbg4zBgD--SNZVmTsD2Ubc-E</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Huang, Shih-Chia</creator><creator>Jaw, Da-Wei</creator><creator>Hoang, Quoc-Viet</creator><creator>Le, Trung-Hieu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9903-5910</orcidid><orcidid>https://orcid.org/0000-0003-2515-9213</orcidid><orcidid>https://orcid.org/0000-0001-5766-4199</orcidid><orcidid>https://orcid.org/0000-0002-6896-3415</orcidid></search><sort><creationdate>20230401</creationdate><title>3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions</title><author>Huang, Shih-Chia ; Jaw, Da-Wei ; Hoang, Quoc-Viet ; Le, Trung-Hieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d499903ec3b385b9df01e8f4efdb3007b5ee76596010f552fddcb118eed2301c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>CNN</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Lightweight</topic><topic>lightweight detector</topic><topic>Meteorology</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Performance degradation</topic><topic>Performance enhancement</topic><topic>Rain</topic><topic>Sensors</topic><topic>Task analysis</topic><topic>Training</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shih-Chia</creatorcontrib><creatorcontrib>Jaw, Da-Wei</creatorcontrib><creatorcontrib>Hoang, Quoc-Viet</creatorcontrib><creatorcontrib>Le, Trung-Hieu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Shih-Chia</au><au>Jaw, Da-Wei</au><au>Hoang, Quoc-Viet</au><au>Le, Trung-Hieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>4293</spage><epage>4305</epage><pages>4293-4305</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Numerous lightweight detection models have been presented in recent years, yet these detectors are inclined to develop for operating under normal weather conditions without adequate studies for rainy conditions. This is one of the causes leads drastically performance degradation of object detectors due to the decrease in visibility. To address above insufficiency, we propose a new and effective approach, named 3FL-Net, to elevate the performance of lightweight object detectors in the presence of rain. Our approach fulfills the goal by closely incorporating four subnetworks, namely feature enhancement subnetwork, feature extraction subnetwork, feature adaptation subnetwork, and lightweight detection subnetwork. The lightweight detection subnetwork achieved the accuracy improvement by learning diverse features from the feature enhancement subnetwork and feature extraction subnetwork via the feature adaptation subnetwork. To further drive the development in object detection induced by rain, we introduce a large-scale driving dataset, called iRain. The full iRain consists of 17,950 real-world rain images, which covers most of the driving scenarios and 85,081 instances explaining five prevalent object classes. Experiment results on divergent rain datasets expose that our 3FL-Net considerably improves the performance of lightweight detectors and surpasses that of the combination models between rain removal and object detection methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3235339</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9903-5910</orcidid><orcidid>https://orcid.org/0000-0003-2515-9213</orcidid><orcidid>https://orcid.org/0000-0001-5766-4199</orcidid><orcidid>https://orcid.org/0000-0002-6896-3415</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2023-04, Vol.24 (4), p.4293-4305
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2023_3235339
source IEEE Electronic Library (IEL)
subjects Adaptation
CNN
Datasets
Detectors
Feature extraction
Lightweight
lightweight detector
Meteorology
Object detection
Object recognition
Performance degradation
Performance enhancement
Rain
Sensors
Task analysis
Training
Weather
title 3FL-Net: An Efficient Approach for Improving Performance of Lightweight Detectors in Rainy Weather Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3FL-Net:%20An%20Efficient%20Approach%20for%20Improving%20Performance%20of%20Lightweight%20Detectors%20in%20Rainy%20Weather%20Conditions&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Huang,%20Shih-Chia&rft.date=2023-04-01&rft.volume=24&rft.issue=4&rft.spage=4293&rft.epage=4305&rft.pages=4293-4305&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3235339&rft_dat=%3Cproquest_RIE%3E2792133987%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792133987&rft_id=info:pmid/&rft_ieee_id=10050384&rfr_iscdi=true