Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework

Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-10, Vol.23 (10), p.18557-18567
Hauptverfasser: Wang, Jingcheng, Zhang, Yong, Wang, Lixun, Hu, Yongli, Piao, Xinglin, Yin, Baocai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18567
container_issue 10
container_start_page 18557
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Wang, Jingcheng
Zhang, Yong
Wang, Lixun
Hu, Yongli
Piao, Xinglin
Yin, Baocai
description Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement each other in common space-time occasions, constituting the transportation system dynamically. Thus, traffic data from multiple sources is ostensibly heterogeneous, but internally correlated. The typical single data driven models are, however, not universally applicable for heterogeneous traffic data. To address this issue, we propose a Multi-task Hypergraph Convolutional Neural Network (MT-HGCN) for the multi-source traffic prediction problem. The framework consists of a main task and a related task. Both tasks are based on Hypergraph Convolutional Neural Networks (HGCN) and are devoted to two prediction problems. Furthermore, the tasks are bridged by a feature compress unit, which models the correlation and shares the latent feature to improve the performance of the main task. The node-level forecasting has been evaluated on historical datasets of Beijing to verify the effectiveness of the proposed method. Compared with the state-of-the-arts, the superior performance of the proposed method can be obtained.
doi_str_mv 10.1109/TITS.2022.3168879
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2022_3168879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9766155</ieee_id><sourcerecordid>2723902103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-580f2a85cb3e80e0484ac4f588a3a0744d8996dcd83908b2f2e5bd51b83fc73</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZNvRvDucH8gPXGq5CmJ7Nbt9SkVfbvbZl4dV4Oz3s4PAjdUjKhlGQP-TJfTxhhbMJpImWanaERFUJGhNDkfMgsjjIiyCW6CmHbb2NB6Qh9vHR1W7U67PDi2IDfeN184pk7fLu6ayt30DV-hfbH-V14xFO8gBa828ABXBdw7rW1lcHvHsrKDDiee72HAb9GF1bXAW7-5hit50_5bBGt3p6Xs-kqMozxNhKSWKalMAUHSYDEMtYmtkJKzTVJ47iUWZaUppQ8I7JgloEoSkELya1J-Rjdn6423n11EFq1dZ3vvw6KpayvMEp4T9ETZbwLwYNVja_22h8VJWrwpwZ_avCn_vz1nbtTpwKAfz5Lk6T3yn8BrAxtIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723902103</pqid></control><display><type>article</type><title>Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jingcheng ; Zhang, Yong ; Wang, Lixun ; Hu, Yongli ; Piao, Xinglin ; Yin, Baocai</creator><creatorcontrib>Wang, Jingcheng ; Zhang, Yong ; Wang, Lixun ; Hu, Yongli ; Piao, Xinglin ; Yin, Baocai</creatorcontrib><description>Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement each other in common space-time occasions, constituting the transportation system dynamically. Thus, traffic data from multiple sources is ostensibly heterogeneous, but internally correlated. The typical single data driven models are, however, not universally applicable for heterogeneous traffic data. To address this issue, we propose a Multi-task Hypergraph Convolutional Neural Network (MT-HGCN) for the multi-source traffic prediction problem. The framework consists of a main task and a related task. Both tasks are based on Hypergraph Convolutional Neural Networks (HGCN) and are devoted to two prediction problems. Furthermore, the tasks are bridged by a feature compress unit, which models the correlation and shares the latent feature to improve the performance of the main task. The node-level forecasting has been evaluated on historical datasets of Beijing to verify the effectiveness of the proposed method. Compared with the state-of-the-arts, the superior performance of the proposed method can be obtained.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3168879</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Data models ; Deep learning ; graph neural network ; Graph theory ; Graphs ; hypergraph learning ; multi-task learning ; Multitasking ; Neural networks ; Performance enhancement ; Predictive models ; Public transportation ; Task analysis ; Traffic information ; Traffic prediction ; Transportation networks ; Transportation systems ; Urban transportation</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.18557-18567</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-580f2a85cb3e80e0484ac4f588a3a0744d8996dcd83908b2f2e5bd51b83fc73</citedby><cites>FETCH-LOGICAL-c223t-580f2a85cb3e80e0484ac4f588a3a0744d8996dcd83908b2f2e5bd51b83fc73</cites><orcidid>0000-0002-4535-8538 ; 0000-0003-0440-438X ; 0000-0001-6650-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9766155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9766155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jingcheng</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Lixun</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Piao, Xinglin</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><title>Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement each other in common space-time occasions, constituting the transportation system dynamically. Thus, traffic data from multiple sources is ostensibly heterogeneous, but internally correlated. The typical single data driven models are, however, not universally applicable for heterogeneous traffic data. To address this issue, we propose a Multi-task Hypergraph Convolutional Neural Network (MT-HGCN) for the multi-source traffic prediction problem. The framework consists of a main task and a related task. Both tasks are based on Hypergraph Convolutional Neural Networks (HGCN) and are devoted to two prediction problems. Furthermore, the tasks are bridged by a feature compress unit, which models the correlation and shares the latent feature to improve the performance of the main task. The node-level forecasting has been evaluated on historical datasets of Beijing to verify the effectiveness of the proposed method. Compared with the state-of-the-arts, the superior performance of the proposed method can be obtained.</description><subject>Artificial neural networks</subject><subject>Data models</subject><subject>Deep learning</subject><subject>graph neural network</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>hypergraph learning</subject><subject>multi-task learning</subject><subject>Multitasking</subject><subject>Neural networks</subject><subject>Performance enhancement</subject><subject>Predictive models</subject><subject>Public transportation</subject><subject>Task analysis</subject><subject>Traffic information</subject><subject>Traffic prediction</subject><subject>Transportation networks</subject><subject>Transportation systems</subject><subject>Urban transportation</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZNvRvDucH8gPXGq5CmJ7Nbt9SkVfbvbZl4dV4Oz3s4PAjdUjKhlGQP-TJfTxhhbMJpImWanaERFUJGhNDkfMgsjjIiyCW6CmHbb2NB6Qh9vHR1W7U67PDi2IDfeN184pk7fLu6ayt30DV-hfbH-V14xFO8gBa828ABXBdw7rW1lcHvHsrKDDiee72HAb9GF1bXAW7-5hit50_5bBGt3p6Xs-kqMozxNhKSWKalMAUHSYDEMtYmtkJKzTVJ47iUWZaUppQ8I7JgloEoSkELya1J-Rjdn6423n11EFq1dZ3vvw6KpayvMEp4T9ETZbwLwYNVja_22h8VJWrwpwZ_avCn_vz1nbtTpwKAfz5Lk6T3yn8BrAxtIw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wang, Jingcheng</creator><creator>Zhang, Yong</creator><creator>Wang, Lixun</creator><creator>Hu, Yongli</creator><creator>Piao, Xinglin</creator><creator>Yin, Baocai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4535-8538</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0001-6650-6790</orcidid></search><sort><creationdate>20221001</creationdate><title>Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework</title><author>Wang, Jingcheng ; Zhang, Yong ; Wang, Lixun ; Hu, Yongli ; Piao, Xinglin ; Yin, Baocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-580f2a85cb3e80e0484ac4f588a3a0744d8996dcd83908b2f2e5bd51b83fc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Data models</topic><topic>Deep learning</topic><topic>graph neural network</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>hypergraph learning</topic><topic>multi-task learning</topic><topic>Multitasking</topic><topic>Neural networks</topic><topic>Performance enhancement</topic><topic>Predictive models</topic><topic>Public transportation</topic><topic>Task analysis</topic><topic>Traffic information</topic><topic>Traffic prediction</topic><topic>Transportation networks</topic><topic>Transportation systems</topic><topic>Urban transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingcheng</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Lixun</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Piao, Xinglin</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jingcheng</au><au>Zhang, Yong</au><au>Wang, Lixun</au><au>Hu, Yongli</au><au>Piao, Xinglin</au><au>Yin, Baocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>18557</spage><epage>18567</epage><pages>18557-18567</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement each other in common space-time occasions, constituting the transportation system dynamically. Thus, traffic data from multiple sources is ostensibly heterogeneous, but internally correlated. The typical single data driven models are, however, not universally applicable for heterogeneous traffic data. To address this issue, we propose a Multi-task Hypergraph Convolutional Neural Network (MT-HGCN) for the multi-source traffic prediction problem. The framework consists of a main task and a related task. Both tasks are based on Hypergraph Convolutional Neural Networks (HGCN) and are devoted to two prediction problems. Furthermore, the tasks are bridged by a feature compress unit, which models the correlation and shares the latent feature to improve the performance of the main task. The node-level forecasting has been evaluated on historical datasets of Beijing to verify the effectiveness of the proposed method. Compared with the state-of-the-arts, the superior performance of the proposed method can be obtained.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3168879</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4535-8538</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0001-6650-6790</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.18557-18567
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2022_3168879
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Data models
Deep learning
graph neural network
Graph theory
Graphs
hypergraph learning
multi-task learning
Multitasking
Neural networks
Performance enhancement
Predictive models
Public transportation
Task analysis
Traffic information
Traffic prediction
Transportation networks
Transportation systems
Urban transportation
title Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitask%20Hypergraph%20Convolutional%20Networks:%20A%20Heterogeneous%20Traffic%20Prediction%20Framework&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Jingcheng&rft.date=2022-10-01&rft.volume=23&rft.issue=10&rft.spage=18557&rft.epage=18567&rft.pages=18557-18567&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3168879&rft_dat=%3Cproquest_RIE%3E2723902103%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723902103&rft_id=info:pmid/&rft_ieee_id=9766155&rfr_iscdi=true