Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework
Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-10, Vol.23 (10), p.18557-18567 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18567 |
---|---|
container_issue | 10 |
container_start_page | 18557 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Wang, Jingcheng Zhang, Yong Wang, Lixun Hu, Yongli Piao, Xinglin Yin, Baocai |
description | Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement each other in common space-time occasions, constituting the transportation system dynamically. Thus, traffic data from multiple sources is ostensibly heterogeneous, but internally correlated. The typical single data driven models are, however, not universally applicable for heterogeneous traffic data. To address this issue, we propose a Multi-task Hypergraph Convolutional Neural Network (MT-HGCN) for the multi-source traffic prediction problem. The framework consists of a main task and a related task. Both tasks are based on Hypergraph Convolutional Neural Networks (HGCN) and are devoted to two prediction problems. Furthermore, the tasks are bridged by a feature compress unit, which models the correlation and shares the latent feature to improve the performance of the main task. The node-level forecasting has been evaluated on historical datasets of Beijing to verify the effectiveness of the proposed method. Compared with the state-of-the-arts, the superior performance of the proposed method can be obtained. |
doi_str_mv | 10.1109/TITS.2022.3168879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2022_3168879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9766155</ieee_id><sourcerecordid>2723902103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-580f2a85cb3e80e0484ac4f588a3a0744d8996dcd83908b2f2e5bd51b83fc73</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZNvRvDucH8gPXGq5CmJ7Nbt9SkVfbvbZl4dV4Oz3s4PAjdUjKhlGQP-TJfTxhhbMJpImWanaERFUJGhNDkfMgsjjIiyCW6CmHbb2NB6Qh9vHR1W7U67PDi2IDfeN184pk7fLu6ayt30DV-hfbH-V14xFO8gBa828ABXBdw7rW1lcHvHsrKDDiee72HAb9GF1bXAW7-5hit50_5bBGt3p6Xs-kqMozxNhKSWKalMAUHSYDEMtYmtkJKzTVJ47iUWZaUppQ8I7JgloEoSkELya1J-Rjdn6423n11EFq1dZ3vvw6KpayvMEp4T9ETZbwLwYNVja_22h8VJWrwpwZ_avCn_vz1nbtTpwKAfz5Lk6T3yn8BrAxtIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723902103</pqid></control><display><type>article</type><title>Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jingcheng ; Zhang, Yong ; Wang, Lixun ; Hu, Yongli ; Piao, Xinglin ; Yin, Baocai</creator><creatorcontrib>Wang, Jingcheng ; Zhang, Yong ; Wang, Lixun ; Hu, Yongli ; Piao, Xinglin ; Yin, Baocai</creatorcontrib><description>Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement each other in common space-time occasions, constituting the transportation system dynamically. Thus, traffic data from multiple sources is ostensibly heterogeneous, but internally correlated. The typical single data driven models are, however, not universally applicable for heterogeneous traffic data. To address this issue, we propose a Multi-task Hypergraph Convolutional Neural Network (MT-HGCN) for the multi-source traffic prediction problem. The framework consists of a main task and a related task. Both tasks are based on Hypergraph Convolutional Neural Networks (HGCN) and are devoted to two prediction problems. Furthermore, the tasks are bridged by a feature compress unit, which models the correlation and shares the latent feature to improve the performance of the main task. The node-level forecasting has been evaluated on historical datasets of Beijing to verify the effectiveness of the proposed method. Compared with the state-of-the-arts, the superior performance of the proposed method can be obtained.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3168879</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Data models ; Deep learning ; graph neural network ; Graph theory ; Graphs ; hypergraph learning ; multi-task learning ; Multitasking ; Neural networks ; Performance enhancement ; Predictive models ; Public transportation ; Task analysis ; Traffic information ; Traffic prediction ; Transportation networks ; Transportation systems ; Urban transportation</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.18557-18567</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-580f2a85cb3e80e0484ac4f588a3a0744d8996dcd83908b2f2e5bd51b83fc73</citedby><cites>FETCH-LOGICAL-c223t-580f2a85cb3e80e0484ac4f588a3a0744d8996dcd83908b2f2e5bd51b83fc73</cites><orcidid>0000-0002-4535-8538 ; 0000-0003-0440-438X ; 0000-0001-6650-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9766155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9766155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jingcheng</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Lixun</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Piao, Xinglin</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><title>Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement each other in common space-time occasions, constituting the transportation system dynamically. Thus, traffic data from multiple sources is ostensibly heterogeneous, but internally correlated. The typical single data driven models are, however, not universally applicable for heterogeneous traffic data. To address this issue, we propose a Multi-task Hypergraph Convolutional Neural Network (MT-HGCN) for the multi-source traffic prediction problem. The framework consists of a main task and a related task. Both tasks are based on Hypergraph Convolutional Neural Networks (HGCN) and are devoted to two prediction problems. Furthermore, the tasks are bridged by a feature compress unit, which models the correlation and shares the latent feature to improve the performance of the main task. The node-level forecasting has been evaluated on historical datasets of Beijing to verify the effectiveness of the proposed method. Compared with the state-of-the-arts, the superior performance of the proposed method can be obtained.</description><subject>Artificial neural networks</subject><subject>Data models</subject><subject>Deep learning</subject><subject>graph neural network</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>hypergraph learning</subject><subject>multi-task learning</subject><subject>Multitasking</subject><subject>Neural networks</subject><subject>Performance enhancement</subject><subject>Predictive models</subject><subject>Public transportation</subject><subject>Task analysis</subject><subject>Traffic information</subject><subject>Traffic prediction</subject><subject>Transportation networks</subject><subject>Transportation systems</subject><subject>Urban transportation</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zj6ZNvRvDucH8gPXGq5CmJ7Nbt9SkVfbvbZl4dV4Oz3s4PAjdUjKhlGQP-TJfTxhhbMJpImWanaERFUJGhNDkfMgsjjIiyCW6CmHbb2NB6Qh9vHR1W7U67PDi2IDfeN184pk7fLu6ayt30DV-hfbH-V14xFO8gBa828ABXBdw7rW1lcHvHsrKDDiee72HAb9GF1bXAW7-5hit50_5bBGt3p6Xs-kqMozxNhKSWKalMAUHSYDEMtYmtkJKzTVJ47iUWZaUppQ8I7JgloEoSkELya1J-Rjdn6423n11EFq1dZ3vvw6KpayvMEp4T9ETZbwLwYNVja_22h8VJWrwpwZ_avCn_vz1nbtTpwKAfz5Lk6T3yn8BrAxtIw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wang, Jingcheng</creator><creator>Zhang, Yong</creator><creator>Wang, Lixun</creator><creator>Hu, Yongli</creator><creator>Piao, Xinglin</creator><creator>Yin, Baocai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4535-8538</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0001-6650-6790</orcidid></search><sort><creationdate>20221001</creationdate><title>Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework</title><author>Wang, Jingcheng ; Zhang, Yong ; Wang, Lixun ; Hu, Yongli ; Piao, Xinglin ; Yin, Baocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-580f2a85cb3e80e0484ac4f588a3a0744d8996dcd83908b2f2e5bd51b83fc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Data models</topic><topic>Deep learning</topic><topic>graph neural network</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>hypergraph learning</topic><topic>multi-task learning</topic><topic>Multitasking</topic><topic>Neural networks</topic><topic>Performance enhancement</topic><topic>Predictive models</topic><topic>Public transportation</topic><topic>Task analysis</topic><topic>Traffic information</topic><topic>Traffic prediction</topic><topic>Transportation networks</topic><topic>Transportation systems</topic><topic>Urban transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingcheng</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Lixun</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Piao, Xinglin</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jingcheng</au><au>Zhang, Yong</au><au>Wang, Lixun</au><au>Hu, Yongli</au><au>Piao, Xinglin</au><au>Yin, Baocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>23</volume><issue>10</issue><spage>18557</spage><epage>18567</epage><pages>18557-18567</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Traffic prediction methods on a single-source data have achieved excellent results in recent years, especially the Graph Convolutional Networks (GCN) based models with spatio-temporal dependency. In reality, various modes of urban transportation operate simultaneously. They influence and complement each other in common space-time occasions, constituting the transportation system dynamically. Thus, traffic data from multiple sources is ostensibly heterogeneous, but internally correlated. The typical single data driven models are, however, not universally applicable for heterogeneous traffic data. To address this issue, we propose a Multi-task Hypergraph Convolutional Neural Network (MT-HGCN) for the multi-source traffic prediction problem. The framework consists of a main task and a related task. Both tasks are based on Hypergraph Convolutional Neural Networks (HGCN) and are devoted to two prediction problems. Furthermore, the tasks are bridged by a feature compress unit, which models the correlation and shares the latent feature to improve the performance of the main task. The node-level forecasting has been evaluated on historical datasets of Beijing to verify the effectiveness of the proposed method. Compared with the state-of-the-arts, the superior performance of the proposed method can be obtained.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3168879</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4535-8538</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0001-6650-6790</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-10, Vol.23 (10), p.18557-18567 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2022_3168879 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Data models Deep learning graph neural network Graph theory Graphs hypergraph learning multi-task learning Multitasking Neural networks Performance enhancement Predictive models Public transportation Task analysis Traffic information Traffic prediction Transportation networks Transportation systems Urban transportation |
title | Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitask%20Hypergraph%20Convolutional%20Networks:%20A%20Heterogeneous%20Traffic%20Prediction%20Framework&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Jingcheng&rft.date=2022-10-01&rft.volume=23&rft.issue=10&rft.spage=18557&rft.epage=18567&rft.pages=18557-18567&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3168879&rft_dat=%3Cproquest_RIE%3E2723902103%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723902103&rft_id=info:pmid/&rft_ieee_id=9766155&rfr_iscdi=true |