Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded
Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-09, Vol.23 (9), p.14632-14648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14648 |
---|---|
container_issue | 9 |
container_start_page | 14632 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Caspari, Adrian Fahr, Steffen Mitsos, Alexander |
description | Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under https://git.rwth-aachen.de/avt-svt/public/optimal-routing that can readily be applied. |
doi_str_mv | 10.1109/TITS.2021.3131298 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3131298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9646530</ieee_id><sourcerecordid>2714902647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d28e47d60d4210bd6becd0282ddd9e56ae1e1a66bf7749db2611b1ac99a66d4f3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8Jy6s9lsskcp_QeVilY9LklmYre03bpJkX57E1o8zfB4b4b3Y-wexABAmKflbPk-kELCIIYYpMkuWA-SJIuEAH3Z7VJFRiTimt3U9bpVVQLQY-PFvnHbfMNHpY_e_KFxu29e-cCnxyI45J-0cuWGav7lmhV_9b8UmpC7HX_xSG1qWxAi4S27qvJNTXfn2Wcf49FyOI3mi8ls-DyPSmniJkKZkUpRC1QSRIG6oBKFzCQiGkp0TkCQa11UaaoMFlIDFJCXxrQiqirus8fT3X3wPweqG7v2h7BrX1qZgjJCapW2Lji5yuDrOlBl96EtGY4WhO1w2Q6X7XDZM64283DKOCL69xutdBKL-A8pJ2Xp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714902647</pqid></control><display><type>article</type><title>Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded</title><source>IEEE Electronic Library (IEL)</source><creator>Caspari, Adrian ; Fahr, Steffen ; Mitsos, Alexander</creator><creatorcontrib>Caspari, Adrian ; Fahr, Steffen ; Mitsos, Alexander</creatorcontrib><description>Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under https://git.rwth-aachen.de/avt-svt/public/optimal-routing that can readily be applied.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3131298</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; carbon foot reduction ; Demand ; eco routing ; Electric motors ; Fuel consumption ; Fuels ; Hybrid electric vehicles ; hybrid vehicles ; Integer programming ; Mechanical power transmission ; mechanistic/data-driven modeling ; Mixed integer ; mixed-integer linear programming ; Optimal vehicle routing and operation ; Optimization ; Power management ; Powertrain ; Route planning ; Route selection ; Routing ; State of charge ; Travel time ; Urban environments ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.14632-14648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d28e47d60d4210bd6becd0282ddd9e56ae1e1a66bf7749db2611b1ac99a66d4f3</citedby><cites>FETCH-LOGICAL-c293t-d28e47d60d4210bd6becd0282ddd9e56ae1e1a66bf7749db2611b1ac99a66d4f3</cites><orcidid>0000-0002-8521-4707 ; 0000-0002-0817-7877 ; 0000-0003-0335-6566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9646530$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9646530$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caspari, Adrian</creatorcontrib><creatorcontrib>Fahr, Steffen</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><title>Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under https://git.rwth-aachen.de/avt-svt/public/optimal-routing that can readily be applied.</description><subject>Batteries</subject><subject>carbon foot reduction</subject><subject>Demand</subject><subject>eco routing</subject><subject>Electric motors</subject><subject>Fuel consumption</subject><subject>Fuels</subject><subject>Hybrid electric vehicles</subject><subject>hybrid vehicles</subject><subject>Integer programming</subject><subject>Mechanical power transmission</subject><subject>mechanistic/data-driven modeling</subject><subject>Mixed integer</subject><subject>mixed-integer linear programming</subject><subject>Optimal vehicle routing and operation</subject><subject>Optimization</subject><subject>Power management</subject><subject>Powertrain</subject><subject>Route planning</subject><subject>Route selection</subject><subject>Routing</subject><subject>State of charge</subject><subject>Travel time</subject><subject>Urban environments</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8Jy6s9lsskcp_QeVilY9LklmYre03bpJkX57E1o8zfB4b4b3Y-wexABAmKflbPk-kELCIIYYpMkuWA-SJIuEAH3Z7VJFRiTimt3U9bpVVQLQY-PFvnHbfMNHpY_e_KFxu29e-cCnxyI45J-0cuWGav7lmhV_9b8UmpC7HX_xSG1qWxAi4S27qvJNTXfn2Wcf49FyOI3mi8ls-DyPSmniJkKZkUpRC1QSRIG6oBKFzCQiGkp0TkCQa11UaaoMFlIDFJCXxrQiqirus8fT3X3wPweqG7v2h7BrX1qZgjJCapW2Lji5yuDrOlBl96EtGY4WhO1w2Q6X7XDZM64283DKOCL69xutdBKL-A8pJ2Xp</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Caspari, Adrian</creator><creator>Fahr, Steffen</creator><creator>Mitsos, Alexander</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8521-4707</orcidid><orcidid>https://orcid.org/0000-0002-0817-7877</orcidid><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid></search><sort><creationdate>20220901</creationdate><title>Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded</title><author>Caspari, Adrian ; Fahr, Steffen ; Mitsos, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d28e47d60d4210bd6becd0282ddd9e56ae1e1a66bf7749db2611b1ac99a66d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>carbon foot reduction</topic><topic>Demand</topic><topic>eco routing</topic><topic>Electric motors</topic><topic>Fuel consumption</topic><topic>Fuels</topic><topic>Hybrid electric vehicles</topic><topic>hybrid vehicles</topic><topic>Integer programming</topic><topic>Mechanical power transmission</topic><topic>mechanistic/data-driven modeling</topic><topic>Mixed integer</topic><topic>mixed-integer linear programming</topic><topic>Optimal vehicle routing and operation</topic><topic>Optimization</topic><topic>Power management</topic><topic>Powertrain</topic><topic>Route planning</topic><topic>Route selection</topic><topic>Routing</topic><topic>State of charge</topic><topic>Travel time</topic><topic>Urban environments</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caspari, Adrian</creatorcontrib><creatorcontrib>Fahr, Steffen</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caspari, Adrian</au><au>Fahr, Steffen</au><au>Mitsos, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>23</volume><issue>9</issue><spage>14632</spage><epage>14648</epage><pages>14632-14648</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under https://git.rwth-aachen.de/avt-svt/public/optimal-routing that can readily be applied.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3131298</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8521-4707</orcidid><orcidid>https://orcid.org/0000-0002-0817-7877</orcidid><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.14632-14648 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2021_3131298 |
source | IEEE Electronic Library (IEL) |
subjects | Batteries carbon foot reduction Demand eco routing Electric motors Fuel consumption Fuels Hybrid electric vehicles hybrid vehicles Integer programming Mechanical power transmission mechanistic/data-driven modeling Mixed integer mixed-integer linear programming Optimal vehicle routing and operation Optimization Power management Powertrain Route planning Route selection Routing State of charge Travel time Urban environments Vehicles |
title | Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Eco-Routing%20for%20Hybrid%20Vehicles%20With%20Powertrain%20Model%20Embedded&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Caspari,%20Adrian&rft.date=2022-09-01&rft.volume=23&rft.issue=9&rft.spage=14632&rft.epage=14648&rft.pages=14632-14648&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3131298&rft_dat=%3Cproquest_RIE%3E2714902647%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714902647&rft_id=info:pmid/&rft_ieee_id=9646530&rfr_iscdi=true |