Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded

Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-09, Vol.23 (9), p.14632-14648
Hauptverfasser: Caspari, Adrian, Fahr, Steffen, Mitsos, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14648
container_issue 9
container_start_page 14632
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Caspari, Adrian
Fahr, Steffen
Mitsos, Alexander
description Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under https://git.rwth-aachen.de/avt-svt/public/optimal-routing that can readily be applied.
doi_str_mv 10.1109/TITS.2021.3131298
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3131298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9646530</ieee_id><sourcerecordid>2714902647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d28e47d60d4210bd6becd0282ddd9e56ae1e1a66bf7749db2611b1ac99a66d4f3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8Jy6s9lsskcp_QeVilY9LklmYre03bpJkX57E1o8zfB4b4b3Y-wexABAmKflbPk-kELCIIYYpMkuWA-SJIuEAH3Z7VJFRiTimt3U9bpVVQLQY-PFvnHbfMNHpY_e_KFxu29e-cCnxyI45J-0cuWGav7lmhV_9b8UmpC7HX_xSG1qWxAi4S27qvJNTXfn2Wcf49FyOI3mi8ls-DyPSmniJkKZkUpRC1QSRIG6oBKFzCQiGkp0TkCQa11UaaoMFlIDFJCXxrQiqirus8fT3X3wPweqG7v2h7BrX1qZgjJCapW2Lji5yuDrOlBl96EtGY4WhO1w2Q6X7XDZM64283DKOCL69xutdBKL-A8pJ2Xp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714902647</pqid></control><display><type>article</type><title>Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded</title><source>IEEE Electronic Library (IEL)</source><creator>Caspari, Adrian ; Fahr, Steffen ; Mitsos, Alexander</creator><creatorcontrib>Caspari, Adrian ; Fahr, Steffen ; Mitsos, Alexander</creatorcontrib><description>Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under https://git.rwth-aachen.de/avt-svt/public/optimal-routing that can readily be applied.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3131298</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; carbon foot reduction ; Demand ; eco routing ; Electric motors ; Fuel consumption ; Fuels ; Hybrid electric vehicles ; hybrid vehicles ; Integer programming ; Mechanical power transmission ; mechanistic/data-driven modeling ; Mixed integer ; mixed-integer linear programming ; Optimal vehicle routing and operation ; Optimization ; Power management ; Powertrain ; Route planning ; Route selection ; Routing ; State of charge ; Travel time ; Urban environments ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.14632-14648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d28e47d60d4210bd6becd0282ddd9e56ae1e1a66bf7749db2611b1ac99a66d4f3</citedby><cites>FETCH-LOGICAL-c293t-d28e47d60d4210bd6becd0282ddd9e56ae1e1a66bf7749db2611b1ac99a66d4f3</cites><orcidid>0000-0002-8521-4707 ; 0000-0002-0817-7877 ; 0000-0003-0335-6566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9646530$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9646530$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caspari, Adrian</creatorcontrib><creatorcontrib>Fahr, Steffen</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><title>Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under https://git.rwth-aachen.de/avt-svt/public/optimal-routing that can readily be applied.</description><subject>Batteries</subject><subject>carbon foot reduction</subject><subject>Demand</subject><subject>eco routing</subject><subject>Electric motors</subject><subject>Fuel consumption</subject><subject>Fuels</subject><subject>Hybrid electric vehicles</subject><subject>hybrid vehicles</subject><subject>Integer programming</subject><subject>Mechanical power transmission</subject><subject>mechanistic/data-driven modeling</subject><subject>Mixed integer</subject><subject>mixed-integer linear programming</subject><subject>Optimal vehicle routing and operation</subject><subject>Optimization</subject><subject>Power management</subject><subject>Powertrain</subject><subject>Route planning</subject><subject>Route selection</subject><subject>Routing</subject><subject>State of charge</subject><subject>Travel time</subject><subject>Urban environments</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHhZ8Jy6s9lsskcp_QeVilY9LklmYre03bpJkX57E1o8zfB4b4b3Y-wexABAmKflbPk-kELCIIYYpMkuWA-SJIuEAH3Z7VJFRiTimt3U9bpVVQLQY-PFvnHbfMNHpY_e_KFxu29e-cCnxyI45J-0cuWGav7lmhV_9b8UmpC7HX_xSG1qWxAi4S27qvJNTXfn2Wcf49FyOI3mi8ls-DyPSmniJkKZkUpRC1QSRIG6oBKFzCQiGkp0TkCQa11UaaoMFlIDFJCXxrQiqirus8fT3X3wPweqG7v2h7BrX1qZgjJCapW2Lji5yuDrOlBl96EtGY4WhO1w2Q6X7XDZM64283DKOCL69xutdBKL-A8pJ2Xp</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Caspari, Adrian</creator><creator>Fahr, Steffen</creator><creator>Mitsos, Alexander</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8521-4707</orcidid><orcidid>https://orcid.org/0000-0002-0817-7877</orcidid><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid></search><sort><creationdate>20220901</creationdate><title>Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded</title><author>Caspari, Adrian ; Fahr, Steffen ; Mitsos, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d28e47d60d4210bd6becd0282ddd9e56ae1e1a66bf7749db2611b1ac99a66d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>carbon foot reduction</topic><topic>Demand</topic><topic>eco routing</topic><topic>Electric motors</topic><topic>Fuel consumption</topic><topic>Fuels</topic><topic>Hybrid electric vehicles</topic><topic>hybrid vehicles</topic><topic>Integer programming</topic><topic>Mechanical power transmission</topic><topic>mechanistic/data-driven modeling</topic><topic>Mixed integer</topic><topic>mixed-integer linear programming</topic><topic>Optimal vehicle routing and operation</topic><topic>Optimization</topic><topic>Power management</topic><topic>Powertrain</topic><topic>Route planning</topic><topic>Route selection</topic><topic>Routing</topic><topic>State of charge</topic><topic>Travel time</topic><topic>Urban environments</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caspari, Adrian</creatorcontrib><creatorcontrib>Fahr, Steffen</creatorcontrib><creatorcontrib>Mitsos, Alexander</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caspari, Adrian</au><au>Fahr, Steffen</au><au>Mitsos, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>23</volume><issue>9</issue><spage>14632</spage><epage>14648</epage><pages>14632-14648</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Exploiting the full potential of hybrid electric vehicles (HEVs) requires suitable (i) route selection and (ii) power management. Due to coupling of the two subproblems, an integrated optimization problem is desired, i.e., optimizing simultaneously the route selection and the split between combustion engine and electric motor over the entire route selection. The resulting optimal route and vehicle operation can be used as a basis for a subordinate vehicle controller. We present an eco-routing approach that embeds a hybrid (mechanistic/data-driven) model of the HEV powertrain in an integrated routing and power management optimization problem. Formulating the integrated routing problem with the hybrid model yields a mixed-integer bilinear program which we reformulate and solve a mixed-integer linear program using a state-of-the-art solver. The results show the validity of the developed hybrid powertrain model and demonstrate that the eco routing approach with the powertrain model embedded can be applied to large-scale problems. We consider optimization for minimal travel time and minimum fuel consumption. The latter results in fuel demand reductions up to 70 %. Alternatively, we minimize the fuel consumption while constraining the travel time to a maximum value resulting in up to 50 % fuel demand reductions. The highest fuel demand reductions are achieved in urban environments. The entire framework is written in python and provided as an open-source version (MIT License) under https://git.rwth-aachen.de/avt-svt/public/optimal-routing that can readily be applied.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3131298</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8521-4707</orcidid><orcidid>https://orcid.org/0000-0002-0817-7877</orcidid><orcidid>https://orcid.org/0000-0003-0335-6566</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.14632-14648
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2021_3131298
source IEEE Electronic Library (IEL)
subjects Batteries
carbon foot reduction
Demand
eco routing
Electric motors
Fuel consumption
Fuels
Hybrid electric vehicles
hybrid vehicles
Integer programming
Mechanical power transmission
mechanistic/data-driven modeling
Mixed integer
mixed-integer linear programming
Optimal vehicle routing and operation
Optimization
Power management
Powertrain
Route planning
Route selection
Routing
State of charge
Travel time
Urban environments
Vehicles
title Optimal Eco-Routing for Hybrid Vehicles With Powertrain Model Embedded
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Eco-Routing%20for%20Hybrid%20Vehicles%20With%20Powertrain%20Model%20Embedded&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Caspari,%20Adrian&rft.date=2022-09-01&rft.volume=23&rft.issue=9&rft.spage=14632&rft.epage=14648&rft.pages=14632-14648&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3131298&rft_dat=%3Cproquest_RIE%3E2714902647%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714902647&rft_id=info:pmid/&rft_ieee_id=9646530&rfr_iscdi=true