Leveraging Human Driving Preferences to Predict Vehicle Speed

Accurate speed prediction is practically critical to eco-safe driving for intelligent vehicles. Existing research only makes vehicles adapt to the dynamic driving environment while rarely considering the influence of human driving preferences. This paper proposes a learning-based model to leverage h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-08, Vol.23 (8), p.11137-11147
Hauptverfasser: Yang, Sen, Wang, Wenshuo, Xi, Junqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11147
container_issue 8
container_start_page 11137
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Yang, Sen
Wang, Wenshuo
Xi, Junqiang
description Accurate speed prediction is practically critical to eco-safe driving for intelligent vehicles. Existing research only makes vehicles adapt to the dynamic driving environment while rarely considering the influence of human driving preferences. This paper proposes a learning-based model to leverage human driving preferences into speed prediction. We first designed an Oriented Hidden Semi-Markov Model (Oriented-HSMM) to learn and predict the driver's driving preference sequences while considering traffic flow influence. Then, we developed an optimal speed prediction algorithm to retrieve the smooth speed trajectories with maximal likelihood based on the estimated driving preferences. Finally, we evaluated the proposed model using the Next Generation Simulation (NGSIM) data compared to its counterparts that do not consider driving preferences. Experimental results demonstrate that our proposed Oriented-HSMM method reaches the best results and achieves a satisfying performance with a low mean absolute error (4.16 km/h) and root mean square error (5.08 km/h) at a 200 m prediction horizon.
doi_str_mv 10.1109/TITS.2021.3101000
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3101000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9511318</ieee_id><sourcerecordid>2700415898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c9e7cd4f5d09a096395620ef476da4e38ab67d68d7ccfce559a030faed8d5b313</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwseN46s9nsJgcPUv-0UFBo9RrSZLZuaXdrsi347c3S4mnmDe_NDD_GbhFGiKAeFtPFfJRBhiOOgABwxgYohEwBsDjv-yxPFQi4ZFchrOM0F4gD9jijA3mzqptVMtlvTZM8-_rQqw9PFXlqLIWka3vpatslX_Rd2w0l8x2Ru2YXldkEujnVIft8fVmMJ-ns_W06fpqlNlO8S62i0rq8Eg6UAVVwJYoMqMrLwpmcuDTLonSFdKW1lSUhootDZchJJ5Yc-ZDdH_fufPuzp9Dpdbv3TTypsxIgRyGVjC48uqxvQ4jv652vt8b_agTdU9I9Jd1T0idKMXN3zNRE9O9XkQ1Hyf8AE_hiqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700415898</pqid></control><display><type>article</type><title>Leveraging Human Driving Preferences to Predict Vehicle Speed</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Sen ; Wang, Wenshuo ; Xi, Junqiang</creator><creatorcontrib>Yang, Sen ; Wang, Wenshuo ; Xi, Junqiang</creatorcontrib><description>Accurate speed prediction is practically critical to eco-safe driving for intelligent vehicles. Existing research only makes vehicles adapt to the dynamic driving environment while rarely considering the influence of human driving preferences. This paper proposes a learning-based model to leverage human driving preferences into speed prediction. We first designed an Oriented Hidden Semi-Markov Model (Oriented-HSMM) to learn and predict the driver's driving preference sequences while considering traffic flow influence. Then, we developed an optimal speed prediction algorithm to retrieve the smooth speed trajectories with maximal likelihood based on the estimated driving preferences. Finally, we evaluated the proposed model using the Next Generation Simulation (NGSIM) data compared to its counterparts that do not consider driving preferences. Experimental results demonstrate that our proposed Oriented-HSMM method reaches the best results and achieves a satisfying performance with a low mean absolute error (4.16 km/h) and root mean square error (5.08 km/h) at a 200 m prediction horizon.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3101000</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Driving ; driving preferences ; Hidden Markov models ; hidden semi-Markov model ; Intelligent vehicles ; Markov chains ; Prediction algorithms ; Random variables ; Roads ; Traffic speed ; Trajectory ; Vehicle dynamics ; Vehicle speed prediction ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-08, Vol.23 (8), p.11137-11147</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c9e7cd4f5d09a096395620ef476da4e38ab67d68d7ccfce559a030faed8d5b313</citedby><cites>FETCH-LOGICAL-c293t-c9e7cd4f5d09a096395620ef476da4e38ab67d68d7ccfce559a030faed8d5b313</cites><orcidid>0000-0001-8607-4542 ; 0000-0002-1860-8351 ; 0000-0002-9953-6926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9511318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9511318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Wang, Wenshuo</creatorcontrib><creatorcontrib>Xi, Junqiang</creatorcontrib><title>Leveraging Human Driving Preferences to Predict Vehicle Speed</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Accurate speed prediction is practically critical to eco-safe driving for intelligent vehicles. Existing research only makes vehicles adapt to the dynamic driving environment while rarely considering the influence of human driving preferences. This paper proposes a learning-based model to leverage human driving preferences into speed prediction. We first designed an Oriented Hidden Semi-Markov Model (Oriented-HSMM) to learn and predict the driver's driving preference sequences while considering traffic flow influence. Then, we developed an optimal speed prediction algorithm to retrieve the smooth speed trajectories with maximal likelihood based on the estimated driving preferences. Finally, we evaluated the proposed model using the Next Generation Simulation (NGSIM) data compared to its counterparts that do not consider driving preferences. Experimental results demonstrate that our proposed Oriented-HSMM method reaches the best results and achieves a satisfying performance with a low mean absolute error (4.16 km/h) and root mean square error (5.08 km/h) at a 200 m prediction horizon.</description><subject>Algorithms</subject><subject>Driving</subject><subject>driving preferences</subject><subject>Hidden Markov models</subject><subject>hidden semi-Markov model</subject><subject>Intelligent vehicles</subject><subject>Markov chains</subject><subject>Prediction algorithms</subject><subject>Random variables</subject><subject>Roads</subject><subject>Traffic speed</subject><subject>Trajectory</subject><subject>Vehicle dynamics</subject><subject>Vehicle speed prediction</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwseN46s9nsJgcPUv-0UFBo9RrSZLZuaXdrsi347c3S4mnmDe_NDD_GbhFGiKAeFtPFfJRBhiOOgABwxgYohEwBsDjv-yxPFQi4ZFchrOM0F4gD9jijA3mzqptVMtlvTZM8-_rQqw9PFXlqLIWka3vpatslX_Rd2w0l8x2Ru2YXldkEujnVIft8fVmMJ-ns_W06fpqlNlO8S62i0rq8Eg6UAVVwJYoMqMrLwpmcuDTLonSFdKW1lSUhootDZchJJ5Yc-ZDdH_fufPuzp9Dpdbv3TTypsxIgRyGVjC48uqxvQ4jv652vt8b_agTdU9I9Jd1T0idKMXN3zNRE9O9XkQ1Hyf8AE_hiqw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Yang, Sen</creator><creator>Wang, Wenshuo</creator><creator>Xi, Junqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8607-4542</orcidid><orcidid>https://orcid.org/0000-0002-1860-8351</orcidid><orcidid>https://orcid.org/0000-0002-9953-6926</orcidid></search><sort><creationdate>20220801</creationdate><title>Leveraging Human Driving Preferences to Predict Vehicle Speed</title><author>Yang, Sen ; Wang, Wenshuo ; Xi, Junqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c9e7cd4f5d09a096395620ef476da4e38ab67d68d7ccfce559a030faed8d5b313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Driving</topic><topic>driving preferences</topic><topic>Hidden Markov models</topic><topic>hidden semi-Markov model</topic><topic>Intelligent vehicles</topic><topic>Markov chains</topic><topic>Prediction algorithms</topic><topic>Random variables</topic><topic>Roads</topic><topic>Traffic speed</topic><topic>Trajectory</topic><topic>Vehicle dynamics</topic><topic>Vehicle speed prediction</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Wang, Wenshuo</creatorcontrib><creatorcontrib>Xi, Junqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Sen</au><au>Wang, Wenshuo</au><au>Xi, Junqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Human Driving Preferences to Predict Vehicle Speed</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>23</volume><issue>8</issue><spage>11137</spage><epage>11147</epage><pages>11137-11147</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Accurate speed prediction is practically critical to eco-safe driving for intelligent vehicles. Existing research only makes vehicles adapt to the dynamic driving environment while rarely considering the influence of human driving preferences. This paper proposes a learning-based model to leverage human driving preferences into speed prediction. We first designed an Oriented Hidden Semi-Markov Model (Oriented-HSMM) to learn and predict the driver's driving preference sequences while considering traffic flow influence. Then, we developed an optimal speed prediction algorithm to retrieve the smooth speed trajectories with maximal likelihood based on the estimated driving preferences. Finally, we evaluated the proposed model using the Next Generation Simulation (NGSIM) data compared to its counterparts that do not consider driving preferences. Experimental results demonstrate that our proposed Oriented-HSMM method reaches the best results and achieves a satisfying performance with a low mean absolute error (4.16 km/h) and root mean square error (5.08 km/h) at a 200 m prediction horizon.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3101000</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8607-4542</orcidid><orcidid>https://orcid.org/0000-0002-1860-8351</orcidid><orcidid>https://orcid.org/0000-0002-9953-6926</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-08, Vol.23 (8), p.11137-11147
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2021_3101000
source IEEE Electronic Library (IEL)
subjects Algorithms
Driving
driving preferences
Hidden Markov models
hidden semi-Markov model
Intelligent vehicles
Markov chains
Prediction algorithms
Random variables
Roads
Traffic speed
Trajectory
Vehicle dynamics
Vehicle speed prediction
Vehicles
title Leveraging Human Driving Preferences to Predict Vehicle Speed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Human%20Driving%20Preferences%20to%20Predict%20Vehicle%20Speed&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Yang,%20Sen&rft.date=2022-08-01&rft.volume=23&rft.issue=8&rft.spage=11137&rft.epage=11147&rft.pages=11137-11147&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3101000&rft_dat=%3Cproquest_RIE%3E2700415898%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700415898&rft_id=info:pmid/&rft_ieee_id=9511318&rfr_iscdi=true