Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios

Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-08, Vol.23 (8), p.10333-10342
Hauptverfasser: Chen, Baiming, Chen, Xiang, Wu, Qiong, Li, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10342
container_issue 8
container_start_page 10333
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Chen, Baiming
Chen, Xiang
Wu, Qiong
Li, Liang
description Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper, we propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments generated by deep reinforcement learning. Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity. We then utilize a nonparametric Bayesian method to cluster the adversarial policies. The proposed method is validated in a typical lane-change scenario that involves frequent interactions between the ego vehicle and the surrounding vehicles. Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles. We also illustrate different patterns of generated adversarial environments, which can be used to infer the weaknesses of the tested vehicles.
doi_str_mv 10.1109/TITS.2021.3091477
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3091477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9468363</ieee_id><sourcerecordid>2700415977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f9ef5f2ef7b7acfc87ff1e76eecfbd4cff8aa839a75cb4a9ff746744b571c353</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4UvO5MmqRpLsfYdDDwYsXbkGbnuI6umUk78O1t2fDq_By-_xz4CHlmdMYY1W_lutzOMpqxGaeaCaVuyIRJWaSUsvx2zJlINZX0njzEeBi2QjI2Iav57gwh2lDbJlmebdPbrvZt4jGZ951v_dH3MfmCfe0aiEndJhvbQrrY2_Ybkq2Ddqj6-Eju0DYRnq5zSsrVslx8pJvP9_VivkmdoFmXogaUmAGqSlmHrlCIDFQO4LDaCYdYWFtwbZV0lbAaUYlcCVFJxRyXfEpeL2dPwf_0EDtz8H1oh48mU5QKJrVSA8UulAs-xgBoTqE-2vBrGDWjLTPaMqMtc7U1dF4unRoA_nkt8oLnnP8BItlnVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700415977</pqid></control><display><type>article</type><title>Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Baiming ; Chen, Xiang ; Wu, Qiong ; Li, Liang</creator><creatorcontrib>Chen, Baiming ; Chen, Xiang ; Wu, Qiong ; Li, Liang</creatorcontrib><description>Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper, we propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments generated by deep reinforcement learning. Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity. We then utilize a nonparametric Bayesian method to cluster the adversarial policies. The proposed method is validated in a typical lane-change scenario that involves frequent interactions between the ego vehicle and the surrounding vehicles. Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles. We also illustrate different patterns of generated adversarial environments, which can be used to infer the weaknesses of the tested vehicles.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3091477</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accidents ; Autonomous vehicle ; Autonomous vehicles ; Bayesian analysis ; Lane changing ; Performance degradation ; Reinforcement learning ; Safety ; Testing ; Training ; unsupervised learning ; vehicle evaluation ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-08, Vol.23 (8), p.10333-10342</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f9ef5f2ef7b7acfc87ff1e76eecfbd4cff8aa839a75cb4a9ff746744b571c353</citedby><cites>FETCH-LOGICAL-c402t-f9ef5f2ef7b7acfc87ff1e76eecfbd4cff8aa839a75cb4a9ff746744b571c353</cites><orcidid>0000-0002-1577-408X ; 0000-0001-8254-8907 ; 0000-0002-3782-0251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9468363$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9468363$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Baiming</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><title>Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper, we propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments generated by deep reinforcement learning. Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity. We then utilize a nonparametric Bayesian method to cluster the adversarial policies. The proposed method is validated in a typical lane-change scenario that involves frequent interactions between the ego vehicle and the surrounding vehicles. Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles. We also illustrate different patterns of generated adversarial environments, which can be used to infer the weaknesses of the tested vehicles.</description><subject>Accidents</subject><subject>Autonomous vehicle</subject><subject>Autonomous vehicles</subject><subject>Bayesian analysis</subject><subject>Lane changing</subject><subject>Performance degradation</subject><subject>Reinforcement learning</subject><subject>Safety</subject><subject>Testing</subject><subject>Training</subject><subject>unsupervised learning</subject><subject>vehicle evaluation</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4UvO5MmqRpLsfYdDDwYsXbkGbnuI6umUk78O1t2fDq_By-_xz4CHlmdMYY1W_lutzOMpqxGaeaCaVuyIRJWaSUsvx2zJlINZX0njzEeBi2QjI2Iav57gwh2lDbJlmebdPbrvZt4jGZ951v_dH3MfmCfe0aiEndJhvbQrrY2_Ybkq2Ddqj6-Eju0DYRnq5zSsrVslx8pJvP9_VivkmdoFmXogaUmAGqSlmHrlCIDFQO4LDaCYdYWFtwbZV0lbAaUYlcCVFJxRyXfEpeL2dPwf_0EDtz8H1oh48mU5QKJrVSA8UulAs-xgBoTqE-2vBrGDWjLTPaMqMtc7U1dF4unRoA_nkt8oLnnP8BItlnVQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Chen, Baiming</creator><creator>Chen, Xiang</creator><creator>Wu, Qiong</creator><creator>Li, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1577-408X</orcidid><orcidid>https://orcid.org/0000-0001-8254-8907</orcidid><orcidid>https://orcid.org/0000-0002-3782-0251</orcidid></search><sort><creationdate>20220801</creationdate><title>Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios</title><author>Chen, Baiming ; Chen, Xiang ; Wu, Qiong ; Li, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f9ef5f2ef7b7acfc87ff1e76eecfbd4cff8aa839a75cb4a9ff746744b571c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accidents</topic><topic>Autonomous vehicle</topic><topic>Autonomous vehicles</topic><topic>Bayesian analysis</topic><topic>Lane changing</topic><topic>Performance degradation</topic><topic>Reinforcement learning</topic><topic>Safety</topic><topic>Testing</topic><topic>Training</topic><topic>unsupervised learning</topic><topic>vehicle evaluation</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Baiming</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Baiming</au><au>Chen, Xiang</au><au>Wu, Qiong</au><au>Li, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>23</volume><issue>8</issue><spage>10333</spage><epage>10342</epage><pages>10333-10342</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper, we propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments generated by deep reinforcement learning. Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity. We then utilize a nonparametric Bayesian method to cluster the adversarial policies. The proposed method is validated in a typical lane-change scenario that involves frequent interactions between the ego vehicle and the surrounding vehicles. Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles. We also illustrate different patterns of generated adversarial environments, which can be used to infer the weaknesses of the tested vehicles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3091477</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1577-408X</orcidid><orcidid>https://orcid.org/0000-0001-8254-8907</orcidid><orcidid>https://orcid.org/0000-0002-3782-0251</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-08, Vol.23 (8), p.10333-10342
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2021_3091477
source IEEE Electronic Library (IEL)
subjects Accidents
Autonomous vehicle
Autonomous vehicles
Bayesian analysis
Lane changing
Performance degradation
Reinforcement learning
Safety
Testing
Training
unsupervised learning
vehicle evaluation
Vehicles
title Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20Evaluation%20of%20Autonomous%20Vehicles%20in%20Lane-Change%20Scenarios&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chen,%20Baiming&rft.date=2022-08-01&rft.volume=23&rft.issue=8&rft.spage=10333&rft.epage=10342&rft.pages=10333-10342&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3091477&rft_dat=%3Cproquest_RIE%3E2700415977%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700415977&rft_id=info:pmid/&rft_ieee_id=9468363&rfr_iscdi=true