Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios
Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-08, Vol.23 (8), p.10333-10342 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10342 |
---|---|
container_issue | 8 |
container_start_page | 10333 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Chen, Baiming Chen, Xiang Wu, Qiong Li, Liang |
description | Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper, we propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments generated by deep reinforcement learning. Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity. We then utilize a nonparametric Bayesian method to cluster the adversarial policies. The proposed method is validated in a typical lane-change scenario that involves frequent interactions between the ego vehicle and the surrounding vehicles. Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles. We also illustrate different patterns of generated adversarial environments, which can be used to infer the weaknesses of the tested vehicles. |
doi_str_mv | 10.1109/TITS.2021.3091477 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3091477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9468363</ieee_id><sourcerecordid>2700415977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f9ef5f2ef7b7acfc87ff1e76eecfbd4cff8aa839a75cb4a9ff746744b571c353</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4UvO5MmqRpLsfYdDDwYsXbkGbnuI6umUk78O1t2fDq_By-_xz4CHlmdMYY1W_lutzOMpqxGaeaCaVuyIRJWaSUsvx2zJlINZX0njzEeBi2QjI2Iav57gwh2lDbJlmebdPbrvZt4jGZ951v_dH3MfmCfe0aiEndJhvbQrrY2_Ybkq2Ddqj6-Eju0DYRnq5zSsrVslx8pJvP9_VivkmdoFmXogaUmAGqSlmHrlCIDFQO4LDaCYdYWFtwbZV0lbAaUYlcCVFJxRyXfEpeL2dPwf_0EDtz8H1oh48mU5QKJrVSA8UulAs-xgBoTqE-2vBrGDWjLTPaMqMtc7U1dF4unRoA_nkt8oLnnP8BItlnVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700415977</pqid></control><display><type>article</type><title>Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Baiming ; Chen, Xiang ; Wu, Qiong ; Li, Liang</creator><creatorcontrib>Chen, Baiming ; Chen, Xiang ; Wu, Qiong ; Li, Liang</creatorcontrib><description>Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper, we propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments generated by deep reinforcement learning. Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity. We then utilize a nonparametric Bayesian method to cluster the adversarial policies. The proposed method is validated in a typical lane-change scenario that involves frequent interactions between the ego vehicle and the surrounding vehicles. Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles. We also illustrate different patterns of generated adversarial environments, which can be used to infer the weaknesses of the tested vehicles.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3091477</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accidents ; Autonomous vehicle ; Autonomous vehicles ; Bayesian analysis ; Lane changing ; Performance degradation ; Reinforcement learning ; Safety ; Testing ; Training ; unsupervised learning ; vehicle evaluation ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-08, Vol.23 (8), p.10333-10342</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f9ef5f2ef7b7acfc87ff1e76eecfbd4cff8aa839a75cb4a9ff746744b571c353</citedby><cites>FETCH-LOGICAL-c402t-f9ef5f2ef7b7acfc87ff1e76eecfbd4cff8aa839a75cb4a9ff746744b571c353</cites><orcidid>0000-0002-1577-408X ; 0000-0001-8254-8907 ; 0000-0002-3782-0251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9468363$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9468363$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Baiming</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><title>Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper, we propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments generated by deep reinforcement learning. Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity. We then utilize a nonparametric Bayesian method to cluster the adversarial policies. The proposed method is validated in a typical lane-change scenario that involves frequent interactions between the ego vehicle and the surrounding vehicles. Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles. We also illustrate different patterns of generated adversarial environments, which can be used to infer the weaknesses of the tested vehicles.</description><subject>Accidents</subject><subject>Autonomous vehicle</subject><subject>Autonomous vehicles</subject><subject>Bayesian analysis</subject><subject>Lane changing</subject><subject>Performance degradation</subject><subject>Reinforcement learning</subject><subject>Safety</subject><subject>Testing</subject><subject>Training</subject><subject>unsupervised learning</subject><subject>vehicle evaluation</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4UvO5MmqRpLsfYdDDwYsXbkGbnuI6umUk78O1t2fDq_By-_xz4CHlmdMYY1W_lutzOMpqxGaeaCaVuyIRJWaSUsvx2zJlINZX0njzEeBi2QjI2Iav57gwh2lDbJlmebdPbrvZt4jGZ951v_dH3MfmCfe0aiEndJhvbQrrY2_Ybkq2Ddqj6-Eju0DYRnq5zSsrVslx8pJvP9_VivkmdoFmXogaUmAGqSlmHrlCIDFQO4LDaCYdYWFtwbZV0lbAaUYlcCVFJxRyXfEpeL2dPwf_0EDtz8H1oh48mU5QKJrVSA8UulAs-xgBoTqE-2vBrGDWjLTPaMqMtc7U1dF4unRoA_nkt8oLnnP8BItlnVQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Chen, Baiming</creator><creator>Chen, Xiang</creator><creator>Wu, Qiong</creator><creator>Li, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1577-408X</orcidid><orcidid>https://orcid.org/0000-0001-8254-8907</orcidid><orcidid>https://orcid.org/0000-0002-3782-0251</orcidid></search><sort><creationdate>20220801</creationdate><title>Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios</title><author>Chen, Baiming ; Chen, Xiang ; Wu, Qiong ; Li, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f9ef5f2ef7b7acfc87ff1e76eecfbd4cff8aa839a75cb4a9ff746744b571c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accidents</topic><topic>Autonomous vehicle</topic><topic>Autonomous vehicles</topic><topic>Bayesian analysis</topic><topic>Lane changing</topic><topic>Performance degradation</topic><topic>Reinforcement learning</topic><topic>Safety</topic><topic>Testing</topic><topic>Training</topic><topic>unsupervised learning</topic><topic>vehicle evaluation</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Baiming</creatorcontrib><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Baiming</au><au>Chen, Xiang</au><au>Wu, Qiong</au><au>Li, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>23</volume><issue>8</issue><spage>10333</spage><epage>10342</epage><pages>10333-10342</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper, we propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments generated by deep reinforcement learning. Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity. We then utilize a nonparametric Bayesian method to cluster the adversarial policies. The proposed method is validated in a typical lane-change scenario that involves frequent interactions between the ego vehicle and the surrounding vehicles. Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles. We also illustrate different patterns of generated adversarial environments, which can be used to infer the weaknesses of the tested vehicles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3091477</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1577-408X</orcidid><orcidid>https://orcid.org/0000-0001-8254-8907</orcidid><orcidid>https://orcid.org/0000-0002-3782-0251</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-08, Vol.23 (8), p.10333-10342 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2021_3091477 |
source | IEEE Electronic Library (IEL) |
subjects | Accidents Autonomous vehicle Autonomous vehicles Bayesian analysis Lane changing Performance degradation Reinforcement learning Safety Testing Training unsupervised learning vehicle evaluation Vehicles |
title | Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20Evaluation%20of%20Autonomous%20Vehicles%20in%20Lane-Change%20Scenarios&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chen,%20Baiming&rft.date=2022-08-01&rft.volume=23&rft.issue=8&rft.spage=10333&rft.epage=10342&rft.pages=10333-10342&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3091477&rft_dat=%3Cproquest_RIE%3E2700415977%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700415977&rft_id=info:pmid/&rft_ieee_id=9468363&rfr_iscdi=true |