Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data

Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-07, Vol.23 (7), p.7628-7636
Hauptverfasser: Zhao, Yan, Wong, Wai, Zheng, Jianfeng, Liu, Henry X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7636
container_issue 7
container_start_page 7628
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Zhao, Yan
Wong, Wai
Zheng, Jianfeng
Liu, Henry X.
description Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collected from probe vehicles such as ride-hailing vehicles and connected vehicles provides an alternative approach to queue length estimation. To estimate queue lengths cycle by cycle, many existing methods require the knowledge of the probe vehicle penetration rate and queue length distribution. However, the estimation of the two parameters has not been well studied. This paper proposes a maximum likelihood estimation method that can estimate the parameters from historical probe vehicle data. The maximum likelihood estimation problem is solved by the expectation-maximization (EM) algorithm iteratively. Validation results show that the proposed method could estimate the parameters accurately and thus enable the existing methods to estimate queue lengths cycle by cycle.
doi_str_mv 10.1109/TITS.2021.3071619
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3071619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9407332</ieee_id><sourcerecordid>2688703548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e26a7556a292c3c59c2156f8f35b641faa8abda0fcfab8383beb4c0f5b6b0e843</originalsourceid><addsrcrecordid>eNpdkMlOwzAQhiMEEqXwAIiLJc4pXuLEOaIuUCmIAoVrZKdj6tLExXYEvD2JWnHgNKP5l5G-KLokeEQIzm-W8-XLiGJKRgxnJCX5UTQgnIsYY5Ie9ztN4hxzfBqdeb_prgknZBB9PchvU7c1KswHbM3a2hWa-mBqGYxtkNVo4awC9AZrU20BLaCB4PbiswzgkWxW6KmFFlABzXtYo4nxwRnV9h6PZs7W_zomMsjz6ETLrYeLwxxGr7PpcnwfF4938_FtEVc0ZyEGmsqM81TSnFas4nlFCU-10IyrNCFaSiHVSmJdaakEE0yBSiqsO1VhEAkbRtf73p2zny34UG5s65ruZUlTITLMeCI6F9m7Kme9d6DLnesQuJ-S4LLnW_Z8y55veeDbZa72GQMAf_48wRljlP0CeUF4cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688703548</pqid></control><display><type>article</type><title>Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yan ; Wong, Wai ; Zheng, Jianfeng ; Liu, Henry X.</creator><creatorcontrib>Zhao, Yan ; Wong, Wai ; Zheng, Jianfeng ; Liu, Henry X.</creatorcontrib><description>Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collected from probe vehicles such as ride-hailing vehicles and connected vehicles provides an alternative approach to queue length estimation. To estimate queue lengths cycle by cycle, many existing methods require the knowledge of the probe vehicle penetration rate and queue length distribution. However, the estimation of the two parameters has not been well studied. This paper proposes a maximum likelihood estimation method that can estimate the parameters from historical probe vehicle data. The maximum likelihood estimation problem is solved by the expectation-maximization (EM) algorithm iteratively. Validation results show that the proposed method could estimate the parameters accurately and thus enable the existing methods to estimate queue lengths cycle by cycle.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3071619</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Car sharing ; Detectors ; Maximum likelihood estimation ; Parameters ; Penetration ; penetration rate ; Probe vehicle ; Probes ; queue length ; Queueing analysis ; Queues ; Real-time systems ; Traffic control ; Traffic signals ; Trajectory ; Transportation ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.7628-7636</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e26a7556a292c3c59c2156f8f35b641faa8abda0fcfab8383beb4c0f5b6b0e843</citedby><cites>FETCH-LOGICAL-c293t-e26a7556a292c3c59c2156f8f35b641faa8abda0fcfab8383beb4c0f5b6b0e843</cites><orcidid>0000-0002-3685-9920 ; 0000-0002-5246-059X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9407332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9407332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Wong, Wai</creatorcontrib><creatorcontrib>Zheng, Jianfeng</creatorcontrib><creatorcontrib>Liu, Henry X.</creatorcontrib><title>Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collected from probe vehicles such as ride-hailing vehicles and connected vehicles provides an alternative approach to queue length estimation. To estimate queue lengths cycle by cycle, many existing methods require the knowledge of the probe vehicle penetration rate and queue length distribution. However, the estimation of the two parameters has not been well studied. This paper proposes a maximum likelihood estimation method that can estimate the parameters from historical probe vehicle data. The maximum likelihood estimation problem is solved by the expectation-maximization (EM) algorithm iteratively. Validation results show that the proposed method could estimate the parameters accurately and thus enable the existing methods to estimate queue lengths cycle by cycle.</description><subject>Algorithms</subject><subject>Car sharing</subject><subject>Detectors</subject><subject>Maximum likelihood estimation</subject><subject>Parameters</subject><subject>Penetration</subject><subject>penetration rate</subject><subject>Probe vehicle</subject><subject>Probes</subject><subject>queue length</subject><subject>Queueing analysis</subject><subject>Queues</subject><subject>Real-time systems</subject><subject>Traffic control</subject><subject>Traffic signals</subject><subject>Trajectory</subject><subject>Transportation</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMlOwzAQhiMEEqXwAIiLJc4pXuLEOaIuUCmIAoVrZKdj6tLExXYEvD2JWnHgNKP5l5G-KLokeEQIzm-W8-XLiGJKRgxnJCX5UTQgnIsYY5Ie9ztN4hxzfBqdeb_prgknZBB9PchvU7c1KswHbM3a2hWa-mBqGYxtkNVo4awC9AZrU20BLaCB4PbiswzgkWxW6KmFFlABzXtYo4nxwRnV9h6PZs7W_zomMsjz6ETLrYeLwxxGr7PpcnwfF4938_FtEVc0ZyEGmsqM81TSnFas4nlFCU-10IyrNCFaSiHVSmJdaakEE0yBSiqsO1VhEAkbRtf73p2zny34UG5s65ruZUlTITLMeCI6F9m7Kme9d6DLnesQuJ-S4LLnW_Z8y55veeDbZa72GQMAf_48wRljlP0CeUF4cA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zhao, Yan</creator><creator>Wong, Wai</creator><creator>Zheng, Jianfeng</creator><creator>Liu, Henry X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3685-9920</orcidid><orcidid>https://orcid.org/0000-0002-5246-059X</orcidid></search><sort><creationdate>20220701</creationdate><title>Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data</title><author>Zhao, Yan ; Wong, Wai ; Zheng, Jianfeng ; Liu, Henry X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e26a7556a292c3c59c2156f8f35b641faa8abda0fcfab8383beb4c0f5b6b0e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Car sharing</topic><topic>Detectors</topic><topic>Maximum likelihood estimation</topic><topic>Parameters</topic><topic>Penetration</topic><topic>penetration rate</topic><topic>Probe vehicle</topic><topic>Probes</topic><topic>queue length</topic><topic>Queueing analysis</topic><topic>Queues</topic><topic>Real-time systems</topic><topic>Traffic control</topic><topic>Traffic signals</topic><topic>Trajectory</topic><topic>Transportation</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Wong, Wai</creatorcontrib><creatorcontrib>Zheng, Jianfeng</creatorcontrib><creatorcontrib>Liu, Henry X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yan</au><au>Wong, Wai</au><au>Zheng, Jianfeng</au><au>Liu, Henry X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>23</volume><issue>7</issue><spage>7628</spage><epage>7636</epage><pages>7628-7636</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collected from probe vehicles such as ride-hailing vehicles and connected vehicles provides an alternative approach to queue length estimation. To estimate queue lengths cycle by cycle, many existing methods require the knowledge of the probe vehicle penetration rate and queue length distribution. However, the estimation of the two parameters has not been well studied. This paper proposes a maximum likelihood estimation method that can estimate the parameters from historical probe vehicle data. The maximum likelihood estimation problem is solved by the expectation-maximization (EM) algorithm iteratively. Validation results show that the proposed method could estimate the parameters accurately and thus enable the existing methods to estimate queue lengths cycle by cycle.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3071619</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3685-9920</orcidid><orcidid>https://orcid.org/0000-0002-5246-059X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.7628-7636
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2021_3071619
source IEEE Electronic Library (IEL)
subjects Algorithms
Car sharing
Detectors
Maximum likelihood estimation
Parameters
Penetration
penetration rate
Probe vehicle
Probes
queue length
Queueing analysis
Queues
Real-time systems
Traffic control
Traffic signals
Trajectory
Transportation
Vehicles
title Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Likelihood%20Estimation%20of%20Probe%20Vehicle%20Penetration%20Rates%20and%20Queue%20Length%20Distributions%20From%20Probe%20Vehicle%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhao,%20Yan&rft.date=2022-07-01&rft.volume=23&rft.issue=7&rft.spage=7628&rft.epage=7636&rft.pages=7628-7636&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3071619&rft_dat=%3Cproquest_RIE%3E2688703548%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688703548&rft_id=info:pmid/&rft_ieee_id=9407332&rfr_iscdi=true