Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data
Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collect...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-07, Vol.23 (7), p.7628-7636 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7636 |
---|---|
container_issue | 7 |
container_start_page | 7628 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Zhao, Yan Wong, Wai Zheng, Jianfeng Liu, Henry X. |
description | Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collected from probe vehicles such as ride-hailing vehicles and connected vehicles provides an alternative approach to queue length estimation. To estimate queue lengths cycle by cycle, many existing methods require the knowledge of the probe vehicle penetration rate and queue length distribution. However, the estimation of the two parameters has not been well studied. This paper proposes a maximum likelihood estimation method that can estimate the parameters from historical probe vehicle data. The maximum likelihood estimation problem is solved by the expectation-maximization (EM) algorithm iteratively. Validation results show that the proposed method could estimate the parameters accurately and thus enable the existing methods to estimate queue lengths cycle by cycle. |
doi_str_mv | 10.1109/TITS.2021.3071619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3071619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9407332</ieee_id><sourcerecordid>2688703548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e26a7556a292c3c59c2156f8f35b641faa8abda0fcfab8383beb4c0f5b6b0e843</originalsourceid><addsrcrecordid>eNpdkMlOwzAQhiMEEqXwAIiLJc4pXuLEOaIuUCmIAoVrZKdj6tLExXYEvD2JWnHgNKP5l5G-KLokeEQIzm-W8-XLiGJKRgxnJCX5UTQgnIsYY5Ie9ztN4hxzfBqdeb_prgknZBB9PchvU7c1KswHbM3a2hWa-mBqGYxtkNVo4awC9AZrU20BLaCB4PbiswzgkWxW6KmFFlABzXtYo4nxwRnV9h6PZs7W_zomMsjz6ETLrYeLwxxGr7PpcnwfF4938_FtEVc0ZyEGmsqM81TSnFas4nlFCU-10IyrNCFaSiHVSmJdaakEE0yBSiqsO1VhEAkbRtf73p2zny34UG5s65ruZUlTITLMeCI6F9m7Kme9d6DLnesQuJ-S4LLnW_Z8y55veeDbZa72GQMAf_48wRljlP0CeUF4cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688703548</pqid></control><display><type>article</type><title>Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yan ; Wong, Wai ; Zheng, Jianfeng ; Liu, Henry X.</creator><creatorcontrib>Zhao, Yan ; Wong, Wai ; Zheng, Jianfeng ; Liu, Henry X.</creatorcontrib><description>Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collected from probe vehicles such as ride-hailing vehicles and connected vehicles provides an alternative approach to queue length estimation. To estimate queue lengths cycle by cycle, many existing methods require the knowledge of the probe vehicle penetration rate and queue length distribution. However, the estimation of the two parameters has not been well studied. This paper proposes a maximum likelihood estimation method that can estimate the parameters from historical probe vehicle data. The maximum likelihood estimation problem is solved by the expectation-maximization (EM) algorithm iteratively. Validation results show that the proposed method could estimate the parameters accurately and thus enable the existing methods to estimate queue lengths cycle by cycle.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3071619</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Car sharing ; Detectors ; Maximum likelihood estimation ; Parameters ; Penetration ; penetration rate ; Probe vehicle ; Probes ; queue length ; Queueing analysis ; Queues ; Real-time systems ; Traffic control ; Traffic signals ; Trajectory ; Transportation ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.7628-7636</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e26a7556a292c3c59c2156f8f35b641faa8abda0fcfab8383beb4c0f5b6b0e843</citedby><cites>FETCH-LOGICAL-c293t-e26a7556a292c3c59c2156f8f35b641faa8abda0fcfab8383beb4c0f5b6b0e843</cites><orcidid>0000-0002-3685-9920 ; 0000-0002-5246-059X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9407332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9407332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Wong, Wai</creatorcontrib><creatorcontrib>Zheng, Jianfeng</creatorcontrib><creatorcontrib>Liu, Henry X.</creatorcontrib><title>Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collected from probe vehicles such as ride-hailing vehicles and connected vehicles provides an alternative approach to queue length estimation. To estimate queue lengths cycle by cycle, many existing methods require the knowledge of the probe vehicle penetration rate and queue length distribution. However, the estimation of the two parameters has not been well studied. This paper proposes a maximum likelihood estimation method that can estimate the parameters from historical probe vehicle data. The maximum likelihood estimation problem is solved by the expectation-maximization (EM) algorithm iteratively. Validation results show that the proposed method could estimate the parameters accurately and thus enable the existing methods to estimate queue lengths cycle by cycle.</description><subject>Algorithms</subject><subject>Car sharing</subject><subject>Detectors</subject><subject>Maximum likelihood estimation</subject><subject>Parameters</subject><subject>Penetration</subject><subject>penetration rate</subject><subject>Probe vehicle</subject><subject>Probes</subject><subject>queue length</subject><subject>Queueing analysis</subject><subject>Queues</subject><subject>Real-time systems</subject><subject>Traffic control</subject><subject>Traffic signals</subject><subject>Trajectory</subject><subject>Transportation</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMlOwzAQhiMEEqXwAIiLJc4pXuLEOaIuUCmIAoVrZKdj6tLExXYEvD2JWnHgNKP5l5G-KLokeEQIzm-W8-XLiGJKRgxnJCX5UTQgnIsYY5Ie9ztN4hxzfBqdeb_prgknZBB9PchvU7c1KswHbM3a2hWa-mBqGYxtkNVo4awC9AZrU20BLaCB4PbiswzgkWxW6KmFFlABzXtYo4nxwRnV9h6PZs7W_zomMsjz6ETLrYeLwxxGr7PpcnwfF4938_FtEVc0ZyEGmsqM81TSnFas4nlFCU-10IyrNCFaSiHVSmJdaakEE0yBSiqsO1VhEAkbRtf73p2zny34UG5s65ruZUlTITLMeCI6F9m7Kme9d6DLnesQuJ-S4LLnW_Z8y55veeDbZa72GQMAf_48wRljlP0CeUF4cA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zhao, Yan</creator><creator>Wong, Wai</creator><creator>Zheng, Jianfeng</creator><creator>Liu, Henry X.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3685-9920</orcidid><orcidid>https://orcid.org/0000-0002-5246-059X</orcidid></search><sort><creationdate>20220701</creationdate><title>Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data</title><author>Zhao, Yan ; Wong, Wai ; Zheng, Jianfeng ; Liu, Henry X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e26a7556a292c3c59c2156f8f35b641faa8abda0fcfab8383beb4c0f5b6b0e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Car sharing</topic><topic>Detectors</topic><topic>Maximum likelihood estimation</topic><topic>Parameters</topic><topic>Penetration</topic><topic>penetration rate</topic><topic>Probe vehicle</topic><topic>Probes</topic><topic>queue length</topic><topic>Queueing analysis</topic><topic>Queues</topic><topic>Real-time systems</topic><topic>Traffic control</topic><topic>Traffic signals</topic><topic>Trajectory</topic><topic>Transportation</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Wong, Wai</creatorcontrib><creatorcontrib>Zheng, Jianfeng</creatorcontrib><creatorcontrib>Liu, Henry X.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yan</au><au>Wong, Wai</au><au>Zheng, Jianfeng</au><au>Liu, Henry X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>23</volume><issue>7</issue><spage>7628</spage><epage>7636</epage><pages>7628-7636</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Queue length estimation plays an important role in traffic signal control and performance measures of signalized intersections. Traditionally, queue lengths are estimated by applying the shockwave theory to loop detector data. In recent years, the tremendous amount of vehicle trajectory data collected from probe vehicles such as ride-hailing vehicles and connected vehicles provides an alternative approach to queue length estimation. To estimate queue lengths cycle by cycle, many existing methods require the knowledge of the probe vehicle penetration rate and queue length distribution. However, the estimation of the two parameters has not been well studied. This paper proposes a maximum likelihood estimation method that can estimate the parameters from historical probe vehicle data. The maximum likelihood estimation problem is solved by the expectation-maximization (EM) algorithm iteratively. Validation results show that the proposed method could estimate the parameters accurately and thus enable the existing methods to estimate queue lengths cycle by cycle.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3071619</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3685-9920</orcidid><orcidid>https://orcid.org/0000-0002-5246-059X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.7628-7636 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2021_3071619 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Car sharing Detectors Maximum likelihood estimation Parameters Penetration penetration rate Probe vehicle Probes queue length Queueing analysis Queues Real-time systems Traffic control Traffic signals Trajectory Transportation Vehicles |
title | Maximum Likelihood Estimation of Probe Vehicle Penetration Rates and Queue Length Distributions From Probe Vehicle Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Likelihood%20Estimation%20of%20Probe%20Vehicle%20Penetration%20Rates%20and%20Queue%20Length%20Distributions%20From%20Probe%20Vehicle%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhao,%20Yan&rft.date=2022-07-01&rft.volume=23&rft.issue=7&rft.spage=7628&rft.epage=7636&rft.pages=7628-7636&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3071619&rft_dat=%3Cproquest_RIE%3E2688703548%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688703548&rft_id=info:pmid/&rft_ieee_id=9407332&rfr_iscdi=true |