Ergonomic Path Planning for Autonomous Vehicles-An Investigation on the Effect of Transition Curves on Motion Sickness

Motion sickness in self-driving cars is a key human factor that aggravates the passengers' health in autonomous vehicles and is investigated in the following pages. As drivers turn into passengers and passengers dwell into other activities, the probability of car sickness is inevitable in self-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-07, Vol.23 (7), p.7258-7269
Hauptverfasser: Siddiqi, Muhammad Rehan, Milani, Sina, Jazar, Reza N., Marzbani, Hormoz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7269
container_issue 7
container_start_page 7258
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Siddiqi, Muhammad Rehan
Milani, Sina
Jazar, Reza N.
Marzbani, Hormoz
description Motion sickness in self-driving cars is a key human factor that aggravates the passengers' health in autonomous vehicles and is investigated in the following pages. As drivers turn into passengers and passengers dwell into other activities, the probability of car sickness is inevitable in self-driving cars. Path planning could serve an important role in reducing sickness. The present study establishes thresholds that contribute to motion sickness from a vehicle's dynamic point of view to generate at first the most susceptible reference track to motion sickness, then redesigned using B-spline, Bezier, and Hermite curves to investigate the thresholds. Trajectory tracking of an eight degree of freedom vehicle model within the Autodriver algorithm is then studied using curvature dependent and curvature independent controllers to draw a comparison. Results are then compared and evaluated to find the optimal transition curve to minimize motion sickness probability. Furthermore, the findings are applied to lane changing maneuvers using various transition curves. Results indicate that four out of five of the motion sickness thresholds were successfully addressed in this investigation. Further research is recommended to address the fifth motion sickness threshold by utilizing the transition curve's key characteristics like local control and non-uniformity.
doi_str_mv 10.1109/TITS.2021.3067858
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3067858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9390383</ieee_id><sourcerecordid>2688703352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-61e82ed81697c905a88ef2b760e7aca2542468e0c93166b8036ecb41abb583513</originalsourceid><addsrcrecordid>eNo9kG9LwzAQxosoOKcfQHwT8HVn_jRp-nKMqYOJg1XfljRet8wtmUk78NubbkM4uOPud3cPT5LcEzwiBBdP5axcjiimZMSwyCWXF8mAcC5TjIm47GuapQXm-Dq5CWETuxknZJAcpn7lrNsZjRaqXaPFVllr7Ao1zqNx1_Yz1wX0CWujtxDSsUUze4DQmpVqjbMoRrsGNG0a0C1yDSq9ssEcZ5POR7RH3tyxsTT620IIt8lVo7YB7s55mHw8T8vJazp_f5lNxvNUMybaVBCQFL4kEUWuo3olJTS0zgWGXGlFeUYzIQHrghEhaomZAF1nRNU1l4wTNkweT3f33v10UXW1cZ238WVFhZQ5ZozTSJETpb0LwUNT7b3ZKf9bEVz19la9vVVvb3W2N-48nHYMAPzzBSswk4z9AWw3dv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688703352</pqid></control><display><type>article</type><title>Ergonomic Path Planning for Autonomous Vehicles-An Investigation on the Effect of Transition Curves on Motion Sickness</title><source>IEEE Electronic Library (IEL)</source><creator>Siddiqi, Muhammad Rehan ; Milani, Sina ; Jazar, Reza N. ; Marzbani, Hormoz</creator><creatorcontrib>Siddiqi, Muhammad Rehan ; Milani, Sina ; Jazar, Reza N. ; Marzbani, Hormoz</creatorcontrib><description>Motion sickness in self-driving cars is a key human factor that aggravates the passengers' health in autonomous vehicles and is investigated in the following pages. As drivers turn into passengers and passengers dwell into other activities, the probability of car sickness is inevitable in self-driving cars. Path planning could serve an important role in reducing sickness. The present study establishes thresholds that contribute to motion sickness from a vehicle's dynamic point of view to generate at first the most susceptible reference track to motion sickness, then redesigned using B-spline, Bezier, and Hermite curves to investigate the thresholds. Trajectory tracking of an eight degree of freedom vehicle model within the Autodriver algorithm is then studied using curvature dependent and curvature independent controllers to draw a comparison. Results are then compared and evaluated to find the optimal transition curve to minimize motion sickness probability. Furthermore, the findings are applied to lane changing maneuvers using various transition curves. Results indicate that four out of five of the motion sickness thresholds were successfully addressed in this investigation. Further research is recommended to address the fifth motion sickness threshold by utilizing the transition curve's key characteristics like local control and non-uniformity.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3067858</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Algorithms ; Autodriver algorithm ; Automobiles ; Autonomous cars ; Autonomous vehicles ; B spline functions ; Curvature ; ergonomic path planning ; Human motion ; Investigations ; Lane changing ; Maneuvers ; Mathematical model ; motion planning and road design ; Motion sickness ; Nonuniformity ; Passengers ; path planning ; Roads ; Task analysis ; Thresholds ; Trajectory planning ; transition curves ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.7258-7269</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-61e82ed81697c905a88ef2b760e7aca2542468e0c93166b8036ecb41abb583513</citedby><cites>FETCH-LOGICAL-c336t-61e82ed81697c905a88ef2b760e7aca2542468e0c93166b8036ecb41abb583513</cites><orcidid>0000-0003-2367-3462 ; 0000-0003-0168-4005 ; 0000-0003-3632-1095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9390383$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9390383$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siddiqi, Muhammad Rehan</creatorcontrib><creatorcontrib>Milani, Sina</creatorcontrib><creatorcontrib>Jazar, Reza N.</creatorcontrib><creatorcontrib>Marzbani, Hormoz</creatorcontrib><title>Ergonomic Path Planning for Autonomous Vehicles-An Investigation on the Effect of Transition Curves on Motion Sickness</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Motion sickness in self-driving cars is a key human factor that aggravates the passengers' health in autonomous vehicles and is investigated in the following pages. As drivers turn into passengers and passengers dwell into other activities, the probability of car sickness is inevitable in self-driving cars. Path planning could serve an important role in reducing sickness. The present study establishes thresholds that contribute to motion sickness from a vehicle's dynamic point of view to generate at first the most susceptible reference track to motion sickness, then redesigned using B-spline, Bezier, and Hermite curves to investigate the thresholds. Trajectory tracking of an eight degree of freedom vehicle model within the Autodriver algorithm is then studied using curvature dependent and curvature independent controllers to draw a comparison. Results are then compared and evaluated to find the optimal transition curve to minimize motion sickness probability. Furthermore, the findings are applied to lane changing maneuvers using various transition curves. Results indicate that four out of five of the motion sickness thresholds were successfully addressed in this investigation. Further research is recommended to address the fifth motion sickness threshold by utilizing the transition curve's key characteristics like local control and non-uniformity.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Autodriver algorithm</subject><subject>Automobiles</subject><subject>Autonomous cars</subject><subject>Autonomous vehicles</subject><subject>B spline functions</subject><subject>Curvature</subject><subject>ergonomic path planning</subject><subject>Human motion</subject><subject>Investigations</subject><subject>Lane changing</subject><subject>Maneuvers</subject><subject>Mathematical model</subject><subject>motion planning and road design</subject><subject>Motion sickness</subject><subject>Nonuniformity</subject><subject>Passengers</subject><subject>path planning</subject><subject>Roads</subject><subject>Task analysis</subject><subject>Thresholds</subject><subject>Trajectory planning</subject><subject>transition curves</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kG9LwzAQxosoOKcfQHwT8HVn_jRp-nKMqYOJg1XfljRet8wtmUk78NubbkM4uOPud3cPT5LcEzwiBBdP5axcjiimZMSwyCWXF8mAcC5TjIm47GuapQXm-Dq5CWETuxknZJAcpn7lrNsZjRaqXaPFVllr7Ao1zqNx1_Yz1wX0CWujtxDSsUUze4DQmpVqjbMoRrsGNG0a0C1yDSq9ssEcZ5POR7RH3tyxsTT620IIt8lVo7YB7s55mHw8T8vJazp_f5lNxvNUMybaVBCQFL4kEUWuo3olJTS0zgWGXGlFeUYzIQHrghEhaomZAF1nRNU1l4wTNkweT3f33v10UXW1cZ238WVFhZQ5ZozTSJETpb0LwUNT7b3ZKf9bEVz19la9vVVvb3W2N-48nHYMAPzzBSswk4z9AWw3dv4</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Siddiqi, Muhammad Rehan</creator><creator>Milani, Sina</creator><creator>Jazar, Reza N.</creator><creator>Marzbani, Hormoz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2367-3462</orcidid><orcidid>https://orcid.org/0000-0003-0168-4005</orcidid><orcidid>https://orcid.org/0000-0003-3632-1095</orcidid></search><sort><creationdate>20220701</creationdate><title>Ergonomic Path Planning for Autonomous Vehicles-An Investigation on the Effect of Transition Curves on Motion Sickness</title><author>Siddiqi, Muhammad Rehan ; Milani, Sina ; Jazar, Reza N. ; Marzbani, Hormoz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-61e82ed81697c905a88ef2b760e7aca2542468e0c93166b8036ecb41abb583513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Autodriver algorithm</topic><topic>Automobiles</topic><topic>Autonomous cars</topic><topic>Autonomous vehicles</topic><topic>B spline functions</topic><topic>Curvature</topic><topic>ergonomic path planning</topic><topic>Human motion</topic><topic>Investigations</topic><topic>Lane changing</topic><topic>Maneuvers</topic><topic>Mathematical model</topic><topic>motion planning and road design</topic><topic>Motion sickness</topic><topic>Nonuniformity</topic><topic>Passengers</topic><topic>path planning</topic><topic>Roads</topic><topic>Task analysis</topic><topic>Thresholds</topic><topic>Trajectory planning</topic><topic>transition curves</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqi, Muhammad Rehan</creatorcontrib><creatorcontrib>Milani, Sina</creatorcontrib><creatorcontrib>Jazar, Reza N.</creatorcontrib><creatorcontrib>Marzbani, Hormoz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siddiqi, Muhammad Rehan</au><au>Milani, Sina</au><au>Jazar, Reza N.</au><au>Marzbani, Hormoz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ergonomic Path Planning for Autonomous Vehicles-An Investigation on the Effect of Transition Curves on Motion Sickness</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>23</volume><issue>7</issue><spage>7258</spage><epage>7269</epage><pages>7258-7269</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Motion sickness in self-driving cars is a key human factor that aggravates the passengers' health in autonomous vehicles and is investigated in the following pages. As drivers turn into passengers and passengers dwell into other activities, the probability of car sickness is inevitable in self-driving cars. Path planning could serve an important role in reducing sickness. The present study establishes thresholds that contribute to motion sickness from a vehicle's dynamic point of view to generate at first the most susceptible reference track to motion sickness, then redesigned using B-spline, Bezier, and Hermite curves to investigate the thresholds. Trajectory tracking of an eight degree of freedom vehicle model within the Autodriver algorithm is then studied using curvature dependent and curvature independent controllers to draw a comparison. Results are then compared and evaluated to find the optimal transition curve to minimize motion sickness probability. Furthermore, the findings are applied to lane changing maneuvers using various transition curves. Results indicate that four out of five of the motion sickness thresholds were successfully addressed in this investigation. Further research is recommended to address the fifth motion sickness threshold by utilizing the transition curve's key characteristics like local control and non-uniformity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3067858</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2367-3462</orcidid><orcidid>https://orcid.org/0000-0003-0168-4005</orcidid><orcidid>https://orcid.org/0000-0003-3632-1095</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-07, Vol.23 (7), p.7258-7269
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2021_3067858
source IEEE Electronic Library (IEL)
subjects Acceleration
Algorithms
Autodriver algorithm
Automobiles
Autonomous cars
Autonomous vehicles
B spline functions
Curvature
ergonomic path planning
Human motion
Investigations
Lane changing
Maneuvers
Mathematical model
motion planning and road design
Motion sickness
Nonuniformity
Passengers
path planning
Roads
Task analysis
Thresholds
Trajectory planning
transition curves
Vehicle dynamics
Vehicles
title Ergonomic Path Planning for Autonomous Vehicles-An Investigation on the Effect of Transition Curves on Motion Sickness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ergonomic%20Path%20Planning%20for%20Autonomous%20Vehicles-An%20Investigation%20on%20the%20Effect%20of%20Transition%20Curves%20on%20Motion%20Sickness&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Siddiqi,%20Muhammad%20Rehan&rft.date=2022-07-01&rft.volume=23&rft.issue=7&rft.spage=7258&rft.epage=7269&rft.pages=7258-7269&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3067858&rft_dat=%3Cproquest_RIE%3E2688703352%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688703352&rft_id=info:pmid/&rft_ieee_id=9390383&rfr_iscdi=true