Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach

Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-08, Vol.22 (8), p.5140-5154
Hauptverfasser: Lim, Wei Yang Bryan, Huang, Jianqiang, Xiong, Zehui, Kang, Jiawen, Niyato, Dusit, Hua, Xian-Sheng, Leung, Cyril, Miao, Chunyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5154
container_issue 8
container_start_page 5140
container_title IEEE transactions on intelligent transportation systems
container_volume 22
creator Lim, Wei Yang Bryan
Huang, Jianqiang
Xiong, Zehui
Kang, Jiawen
Niyato, Dusit
Hua, Xian-Sheng
Leung, Cyril
Miao, Chunyan
description Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service (DaaS), is becoming increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.
doi_str_mv 10.1109/TITS.2021.3056341
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3056341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9354588</ieee_id><sourcerecordid>2560134639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-ea78168dfe6dc350bb647eae4a11284f07d306d413d04401e08e3f23eded11943</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSsEEmPwAxCXSJw77CbpWm7T2GDSJg50u1ZZ47JMXTqSTIh_T6shTras957tL4ruEUaIkD8Vi-JjlECCIw4y5QIvogFKmcUAmF72fSLiHCRcRzfe77upkIiDyBbtt3LaszlpciqQZktSzhr7yYxl68kmnlm1bbr5wgZylgJra7ahnaka8s9swlanJpj4xRzIetNa1bBpa4NTVYhXKlS7PmpyPLpWVbvb6KpWjae7vzqM1vNZMX2Ll--vi-lkGVcCkhCTGmeYZrqmVFdcwnabijEpEgoxyUQNY80h1QK5BiEACTLidcK7HzRiLvgwejzndmu_TuRDuW9PrrvNl4lMAblIed6p8KyqXOu9o7o8OnNQ7qdEKHusZY-17LGWf1g7z8PZY4joX59zKWSW8V8xaHNl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134639</pqid></control><display><type>article</type><title>Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach</title><source>IEEE Electronic Library Online</source><creator>Lim, Wei Yang Bryan ; Huang, Jianqiang ; Xiong, Zehui ; Kang, Jiawen ; Niyato, Dusit ; Hua, Xian-Sheng ; Leung, Cyril ; Miao, Chunyan</creator><creatorcontrib>Lim, Wei Yang Bryan ; Huang, Jianqiang ; Xiong, Zehui ; Kang, Jiawen ; Niyato, Dusit ; Hua, Xian-Sheng ; Leung, Cyril ; Miao, Chunyan</creatorcontrib><description>Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service (DaaS), is becoming increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3056341</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accounting ; Algorithms ; Artificial intelligence ; Asymmetry ; Autonomous aerial vehicles ; Collaboration ; Computation ; Computational modeling ; contract theory ; Contracts ; Data collection ; Data models ; Data retrieval ; Deep learning ; Federated learning ; Heterogeneity ; incentive mechanism ; Internet of Vehicles ; Machine learning ; Matching ; Occupancy ; Parking facilities ; Privacy ; Sensors ; Training ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-08, Vol.22 (8), p.5140-5154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-ea78168dfe6dc350bb647eae4a11284f07d306d413d04401e08e3f23eded11943</citedby><cites>FETCH-LOGICAL-c402t-ea78168dfe6dc350bb647eae4a11284f07d306d413d04401e08e3f23eded11943</cites><orcidid>0000-0003-2150-5561 ; 0000-0002-7442-7416 ; 0000-0002-8232-5049 ; 0000-0002-8218-3490 ; 0000-0002-4440-941X ; 0000-0001-9911-2069 ; 0000-0002-0300-3448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9354588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9354588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Wei Yang Bryan</creatorcontrib><creatorcontrib>Huang, Jianqiang</creatorcontrib><creatorcontrib>Xiong, Zehui</creatorcontrib><creatorcontrib>Kang, Jiawen</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Hua, Xian-Sheng</creatorcontrib><creatorcontrib>Leung, Cyril</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><title>Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service (DaaS), is becoming increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.</description><subject>Accounting</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Asymmetry</subject><subject>Autonomous aerial vehicles</subject><subject>Collaboration</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>contract theory</subject><subject>Contracts</subject><subject>Data collection</subject><subject>Data models</subject><subject>Data retrieval</subject><subject>Deep learning</subject><subject>Federated learning</subject><subject>Heterogeneity</subject><subject>incentive mechanism</subject><subject>Internet of Vehicles</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Occupancy</subject><subject>Parking facilities</subject><subject>Privacy</subject><subject>Sensors</subject><subject>Training</subject><subject>Unmanned aerial vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSsEEmPwAxCXSJw77CbpWm7T2GDSJg50u1ZZ47JMXTqSTIh_T6shTras957tL4ruEUaIkD8Vi-JjlECCIw4y5QIvogFKmcUAmF72fSLiHCRcRzfe77upkIiDyBbtt3LaszlpciqQZktSzhr7yYxl68kmnlm1bbr5wgZylgJra7ahnaka8s9swlanJpj4xRzIetNa1bBpa4NTVYhXKlS7PmpyPLpWVbvb6KpWjae7vzqM1vNZMX2Ll--vi-lkGVcCkhCTGmeYZrqmVFdcwnabijEpEgoxyUQNY80h1QK5BiEACTLidcK7HzRiLvgwejzndmu_TuRDuW9PrrvNl4lMAblIed6p8KyqXOu9o7o8OnNQ7qdEKHusZY-17LGWf1g7z8PZY4joX59zKWSW8V8xaHNl</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lim, Wei Yang Bryan</creator><creator>Huang, Jianqiang</creator><creator>Xiong, Zehui</creator><creator>Kang, Jiawen</creator><creator>Niyato, Dusit</creator><creator>Hua, Xian-Sheng</creator><creator>Leung, Cyril</creator><creator>Miao, Chunyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2150-5561</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid><orcidid>https://orcid.org/0000-0002-8232-5049</orcidid><orcidid>https://orcid.org/0000-0002-8218-3490</orcidid><orcidid>https://orcid.org/0000-0002-4440-941X</orcidid><orcidid>https://orcid.org/0000-0001-9911-2069</orcidid><orcidid>https://orcid.org/0000-0002-0300-3448</orcidid></search><sort><creationdate>20210801</creationdate><title>Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach</title><author>Lim, Wei Yang Bryan ; Huang, Jianqiang ; Xiong, Zehui ; Kang, Jiawen ; Niyato, Dusit ; Hua, Xian-Sheng ; Leung, Cyril ; Miao, Chunyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-ea78168dfe6dc350bb647eae4a11284f07d306d413d04401e08e3f23eded11943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accounting</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Asymmetry</topic><topic>Autonomous aerial vehicles</topic><topic>Collaboration</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>contract theory</topic><topic>Contracts</topic><topic>Data collection</topic><topic>Data models</topic><topic>Data retrieval</topic><topic>Deep learning</topic><topic>Federated learning</topic><topic>Heterogeneity</topic><topic>incentive mechanism</topic><topic>Internet of Vehicles</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Occupancy</topic><topic>Parking facilities</topic><topic>Privacy</topic><topic>Sensors</topic><topic>Training</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Wei Yang Bryan</creatorcontrib><creatorcontrib>Huang, Jianqiang</creatorcontrib><creatorcontrib>Xiong, Zehui</creatorcontrib><creatorcontrib>Kang, Jiawen</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Hua, Xian-Sheng</creatorcontrib><creatorcontrib>Leung, Cyril</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Wei Yang Bryan</au><au>Huang, Jianqiang</au><au>Xiong, Zehui</au><au>Kang, Jiawen</au><au>Niyato, Dusit</au><au>Hua, Xian-Sheng</au><au>Leung, Cyril</au><au>Miao, Chunyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>22</volume><issue>8</issue><spage>5140</spage><epage>5154</epage><pages>5140-5154</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service (DaaS), is becoming increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3056341</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2150-5561</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid><orcidid>https://orcid.org/0000-0002-8232-5049</orcidid><orcidid>https://orcid.org/0000-0002-8218-3490</orcidid><orcidid>https://orcid.org/0000-0002-4440-941X</orcidid><orcidid>https://orcid.org/0000-0001-9911-2069</orcidid><orcidid>https://orcid.org/0000-0002-0300-3448</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2021-08, Vol.22 (8), p.5140-5154
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2021_3056341
source IEEE Electronic Library Online
subjects Accounting
Algorithms
Artificial intelligence
Asymmetry
Autonomous aerial vehicles
Collaboration
Computation
Computational modeling
contract theory
Contracts
Data collection
Data models
Data retrieval
Deep learning
Federated learning
Heterogeneity
incentive mechanism
Internet of Vehicles
Machine learning
Matching
Occupancy
Parking facilities
Privacy
Sensors
Training
Unmanned aerial vehicles
title Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Federated%20Learning%20in%20UAV-Enabled%20Internet%20of%20Vehicles:%20A%20Multi-Dimensional%20Contract-Matching%20Approach&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Lim,%20Wei%20Yang%20Bryan&rft.date=2021-08-01&rft.volume=22&rft.issue=8&rft.spage=5140&rft.epage=5154&rft.pages=5140-5154&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3056341&rft_dat=%3Cproquest_RIE%3E2560134639%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134639&rft_id=info:pmid/&rft_ieee_id=9354588&rfr_iscdi=true