Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach
Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for da...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2021-08, Vol.22 (8), p.5140-5154 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5154 |
---|---|
container_issue | 8 |
container_start_page | 5140 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 22 |
creator | Lim, Wei Yang Bryan Huang, Jianqiang Xiong, Zehui Kang, Jiawen Niyato, Dusit Hua, Xian-Sheng Leung, Cyril Miao, Chunyan |
description | Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service (DaaS), is becoming increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry. |
doi_str_mv | 10.1109/TITS.2021.3056341 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2021_3056341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9354588</ieee_id><sourcerecordid>2560134639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-ea78168dfe6dc350bb647eae4a11284f07d306d413d04401e08e3f23eded11943</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSsEEmPwAxCXSJw77CbpWm7T2GDSJg50u1ZZ47JMXTqSTIh_T6shTras957tL4ruEUaIkD8Vi-JjlECCIw4y5QIvogFKmcUAmF72fSLiHCRcRzfe77upkIiDyBbtt3LaszlpciqQZktSzhr7yYxl68kmnlm1bbr5wgZylgJra7ahnaka8s9swlanJpj4xRzIetNa1bBpa4NTVYhXKlS7PmpyPLpWVbvb6KpWjae7vzqM1vNZMX2Ll--vi-lkGVcCkhCTGmeYZrqmVFdcwnabijEpEgoxyUQNY80h1QK5BiEACTLidcK7HzRiLvgwejzndmu_TuRDuW9PrrvNl4lMAblIed6p8KyqXOu9o7o8OnNQ7qdEKHusZY-17LGWf1g7z8PZY4joX59zKWSW8V8xaHNl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134639</pqid></control><display><type>article</type><title>Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach</title><source>IEEE Electronic Library Online</source><creator>Lim, Wei Yang Bryan ; Huang, Jianqiang ; Xiong, Zehui ; Kang, Jiawen ; Niyato, Dusit ; Hua, Xian-Sheng ; Leung, Cyril ; Miao, Chunyan</creator><creatorcontrib>Lim, Wei Yang Bryan ; Huang, Jianqiang ; Xiong, Zehui ; Kang, Jiawen ; Niyato, Dusit ; Hua, Xian-Sheng ; Leung, Cyril ; Miao, Chunyan</creatorcontrib><description>Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service (DaaS), is becoming increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3056341</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accounting ; Algorithms ; Artificial intelligence ; Asymmetry ; Autonomous aerial vehicles ; Collaboration ; Computation ; Computational modeling ; contract theory ; Contracts ; Data collection ; Data models ; Data retrieval ; Deep learning ; Federated learning ; Heterogeneity ; incentive mechanism ; Internet of Vehicles ; Machine learning ; Matching ; Occupancy ; Parking facilities ; Privacy ; Sensors ; Training ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-08, Vol.22 (8), p.5140-5154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-ea78168dfe6dc350bb647eae4a11284f07d306d413d04401e08e3f23eded11943</citedby><cites>FETCH-LOGICAL-c402t-ea78168dfe6dc350bb647eae4a11284f07d306d413d04401e08e3f23eded11943</cites><orcidid>0000-0003-2150-5561 ; 0000-0002-7442-7416 ; 0000-0002-8232-5049 ; 0000-0002-8218-3490 ; 0000-0002-4440-941X ; 0000-0001-9911-2069 ; 0000-0002-0300-3448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9354588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9354588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Wei Yang Bryan</creatorcontrib><creatorcontrib>Huang, Jianqiang</creatorcontrib><creatorcontrib>Xiong, Zehui</creatorcontrib><creatorcontrib>Kang, Jiawen</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Hua, Xian-Sheng</creatorcontrib><creatorcontrib>Leung, Cyril</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><title>Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service (DaaS), is becoming increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.</description><subject>Accounting</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Asymmetry</subject><subject>Autonomous aerial vehicles</subject><subject>Collaboration</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>contract theory</subject><subject>Contracts</subject><subject>Data collection</subject><subject>Data models</subject><subject>Data retrieval</subject><subject>Deep learning</subject><subject>Federated learning</subject><subject>Heterogeneity</subject><subject>incentive mechanism</subject><subject>Internet of Vehicles</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Occupancy</subject><subject>Parking facilities</subject><subject>Privacy</subject><subject>Sensors</subject><subject>Training</subject><subject>Unmanned aerial vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSsEEmPwAxCXSJw77CbpWm7T2GDSJg50u1ZZ47JMXTqSTIh_T6shTras957tL4ruEUaIkD8Vi-JjlECCIw4y5QIvogFKmcUAmF72fSLiHCRcRzfe77upkIiDyBbtt3LaszlpciqQZktSzhr7yYxl68kmnlm1bbr5wgZylgJra7ahnaka8s9swlanJpj4xRzIetNa1bBpa4NTVYhXKlS7PmpyPLpWVbvb6KpWjae7vzqM1vNZMX2Ll--vi-lkGVcCkhCTGmeYZrqmVFdcwnabijEpEgoxyUQNY80h1QK5BiEACTLidcK7HzRiLvgwejzndmu_TuRDuW9PrrvNl4lMAblIed6p8KyqXOu9o7o8OnNQ7qdEKHusZY-17LGWf1g7z8PZY4joX59zKWSW8V8xaHNl</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lim, Wei Yang Bryan</creator><creator>Huang, Jianqiang</creator><creator>Xiong, Zehui</creator><creator>Kang, Jiawen</creator><creator>Niyato, Dusit</creator><creator>Hua, Xian-Sheng</creator><creator>Leung, Cyril</creator><creator>Miao, Chunyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2150-5561</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid><orcidid>https://orcid.org/0000-0002-8232-5049</orcidid><orcidid>https://orcid.org/0000-0002-8218-3490</orcidid><orcidid>https://orcid.org/0000-0002-4440-941X</orcidid><orcidid>https://orcid.org/0000-0001-9911-2069</orcidid><orcidid>https://orcid.org/0000-0002-0300-3448</orcidid></search><sort><creationdate>20210801</creationdate><title>Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach</title><author>Lim, Wei Yang Bryan ; Huang, Jianqiang ; Xiong, Zehui ; Kang, Jiawen ; Niyato, Dusit ; Hua, Xian-Sheng ; Leung, Cyril ; Miao, Chunyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-ea78168dfe6dc350bb647eae4a11284f07d306d413d04401e08e3f23eded11943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accounting</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Asymmetry</topic><topic>Autonomous aerial vehicles</topic><topic>Collaboration</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>contract theory</topic><topic>Contracts</topic><topic>Data collection</topic><topic>Data models</topic><topic>Data retrieval</topic><topic>Deep learning</topic><topic>Federated learning</topic><topic>Heterogeneity</topic><topic>incentive mechanism</topic><topic>Internet of Vehicles</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Occupancy</topic><topic>Parking facilities</topic><topic>Privacy</topic><topic>Sensors</topic><topic>Training</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Wei Yang Bryan</creatorcontrib><creatorcontrib>Huang, Jianqiang</creatorcontrib><creatorcontrib>Xiong, Zehui</creatorcontrib><creatorcontrib>Kang, Jiawen</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Hua, Xian-Sheng</creatorcontrib><creatorcontrib>Leung, Cyril</creatorcontrib><creatorcontrib>Miao, Chunyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Wei Yang Bryan</au><au>Huang, Jianqiang</au><au>Xiong, Zehui</au><au>Kang, Jiawen</au><au>Niyato, Dusit</au><au>Hua, Xian-Sheng</au><au>Leung, Cyril</au><au>Miao, Chunyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>22</volume><issue>8</issue><spage>5140</spage><epage>5154</epage><pages>5140-5154</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service (DaaS), is becoming increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3056341</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2150-5561</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid><orcidid>https://orcid.org/0000-0002-8232-5049</orcidid><orcidid>https://orcid.org/0000-0002-8218-3490</orcidid><orcidid>https://orcid.org/0000-0002-4440-941X</orcidid><orcidid>https://orcid.org/0000-0001-9911-2069</orcidid><orcidid>https://orcid.org/0000-0002-0300-3448</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2021-08, Vol.22 (8), p.5140-5154 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2021_3056341 |
source | IEEE Electronic Library Online |
subjects | Accounting Algorithms Artificial intelligence Asymmetry Autonomous aerial vehicles Collaboration Computation Computational modeling contract theory Contracts Data collection Data models Data retrieval Deep learning Federated learning Heterogeneity incentive mechanism Internet of Vehicles Machine learning Matching Occupancy Parking facilities Privacy Sensors Training Unmanned aerial vehicles |
title | Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Federated%20Learning%20in%20UAV-Enabled%20Internet%20of%20Vehicles:%20A%20Multi-Dimensional%20Contract-Matching%20Approach&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Lim,%20Wei%20Yang%20Bryan&rft.date=2021-08-01&rft.volume=22&rft.issue=8&rft.spage=5140&rft.epage=5154&rft.pages=5140-5154&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3056341&rft_dat=%3Cproquest_RIE%3E2560134639%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134639&rft_id=info:pmid/&rft_ieee_id=9354588&rfr_iscdi=true |