Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems

Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-07, Vol.22 (7), p.4507-4518
Hauptverfasser: Ashraf, Javed, Bakhshi, Asim D., Moustafa, Nour, Khurshid, Hasnat, Javed, Abdullah, Beheshti, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4518
container_issue 7
container_start_page 4507
container_title IEEE transactions on intelligent transportation systems
container_volume 22
creator Ashraf, Javed
Bakhshi, Asim D.
Moustafa, Nour
Khurshid, Hasnat
Javed, Abdullah
Beheshti, Amin
description Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques.
doi_str_mv 10.1109/TITS.2020.3017882
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2020_3017882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9198908</ieee_id><sourcerecordid>2551362586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33</originalsourceid><addsrcrecordid>eNo9kMtOwzAURCMEEqXwAYiNJdYpfsRJvKz6gEoFFg3ryHGuS6rELrZTqVu-nFStWN3RaGaudKLokeAJIVi8FKtiM6GY4gnDJMtzehWNCOd5jDFJr0-aJrHAHN9Gd97vBjfhhIyi3w97gBbNAfZoDdKZxmzjhZFVCzVab4p3NO2DBaNsDQ5NnfpuAqjQO0DaOjRvvBoG3NBCU2M72dreo8UBTPBo6WyHViZA2zbbwUGFk8bvrQsyNNagzdEH6Px9dKNl6-HhcsfR13JRzN7i9efrajZdx4oKFmIOlUgrotMsq3JWV0zVWSI1kznUXAslk1TyRIMQlDKpBdAKKwGaMCWlrBgbR8_n3b2zPz34UO5s78zwsqScE5ZSnqdDipxTylnvHehy75pOumNJcHlCXZ5QlyfU5QX10Hk6dxoA-M8LInKBc_YHhax-AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551362586</pqid></control><display><type>article</type><title>Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ashraf, Javed ; Bakhshi, Asim D. ; Moustafa, Nour ; Khurshid, Hasnat ; Javed, Abdullah ; Beheshti, Amin</creator><creatorcontrib>Ashraf, Javed ; Bakhshi, Asim D. ; Moustafa, Nour ; Khurshid, Hasnat ; Javed, Abdullah ; Beheshti, Amin</creatorcontrib><description>Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3017882</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; autoencoder ; Autonomous vehicles ; CAN bus ; Computer architecture ; Computer crime ; Computer networks ; Cybersecurity ; Datasets ; Deep learning ; Denial of service attacks ; Gateways ; Intelligent transport systems ; Intelligent transportation systems ; Internet of Vehicles ; Intrusion detection ; intrusion detection system ; Intrusion detection systems ; LSTM ; Machine learning ; Security management ; Short term ; Spoofing ; Training ; Transportation networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-07, Vol.22 (7), p.4507-4518</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33</citedby><cites>FETCH-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33</cites><orcidid>0000-0002-9516-9153 ; 0000-0003-0491-5649 ; 0000-0001-6127-9349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9198908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9198908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ashraf, Javed</creatorcontrib><creatorcontrib>Bakhshi, Asim D.</creatorcontrib><creatorcontrib>Moustafa, Nour</creatorcontrib><creatorcontrib>Khurshid, Hasnat</creatorcontrib><creatorcontrib>Javed, Abdullah</creatorcontrib><creatorcontrib>Beheshti, Amin</creatorcontrib><title>Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques.</description><subject>Algorithms</subject><subject>autoencoder</subject><subject>Autonomous vehicles</subject><subject>CAN bus</subject><subject>Computer architecture</subject><subject>Computer crime</subject><subject>Computer networks</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Gateways</subject><subject>Intelligent transport systems</subject><subject>Intelligent transportation systems</subject><subject>Internet of Vehicles</subject><subject>Intrusion detection</subject><subject>intrusion detection system</subject><subject>Intrusion detection systems</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Security management</subject><subject>Short term</subject><subject>Spoofing</subject><subject>Training</subject><subject>Transportation networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURCMEEqXwAYiNJdYpfsRJvKz6gEoFFg3ryHGuS6rELrZTqVu-nFStWN3RaGaudKLokeAJIVi8FKtiM6GY4gnDJMtzehWNCOd5jDFJr0-aJrHAHN9Gd97vBjfhhIyi3w97gBbNAfZoDdKZxmzjhZFVCzVab4p3NO2DBaNsDQ5NnfpuAqjQO0DaOjRvvBoG3NBCU2M72dreo8UBTPBo6WyHViZA2zbbwUGFk8bvrQsyNNagzdEH6Px9dKNl6-HhcsfR13JRzN7i9efrajZdx4oKFmIOlUgrotMsq3JWV0zVWSI1kznUXAslk1TyRIMQlDKpBdAKKwGaMCWlrBgbR8_n3b2zPz34UO5s78zwsqScE5ZSnqdDipxTylnvHehy75pOumNJcHlCXZ5QlyfU5QX10Hk6dxoA-M8LInKBc_YHhax-AA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ashraf, Javed</creator><creator>Bakhshi, Asim D.</creator><creator>Moustafa, Nour</creator><creator>Khurshid, Hasnat</creator><creator>Javed, Abdullah</creator><creator>Beheshti, Amin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9516-9153</orcidid><orcidid>https://orcid.org/0000-0003-0491-5649</orcidid><orcidid>https://orcid.org/0000-0001-6127-9349</orcidid></search><sort><creationdate>20210701</creationdate><title>Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems</title><author>Ashraf, Javed ; Bakhshi, Asim D. ; Moustafa, Nour ; Khurshid, Hasnat ; Javed, Abdullah ; Beheshti, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>autoencoder</topic><topic>Autonomous vehicles</topic><topic>CAN bus</topic><topic>Computer architecture</topic><topic>Computer crime</topic><topic>Computer networks</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Gateways</topic><topic>Intelligent transport systems</topic><topic>Intelligent transportation systems</topic><topic>Internet of Vehicles</topic><topic>Intrusion detection</topic><topic>intrusion detection system</topic><topic>Intrusion detection systems</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Security management</topic><topic>Short term</topic><topic>Spoofing</topic><topic>Training</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashraf, Javed</creatorcontrib><creatorcontrib>Bakhshi, Asim D.</creatorcontrib><creatorcontrib>Moustafa, Nour</creatorcontrib><creatorcontrib>Khurshid, Hasnat</creatorcontrib><creatorcontrib>Javed, Abdullah</creatorcontrib><creatorcontrib>Beheshti, Amin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ashraf, Javed</au><au>Bakhshi, Asim D.</au><au>Moustafa, Nour</au><au>Khurshid, Hasnat</au><au>Javed, Abdullah</au><au>Beheshti, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>22</volume><issue>7</issue><spage>4507</spage><epage>4518</epage><pages>4507-4518</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3017882</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9516-9153</orcidid><orcidid>https://orcid.org/0000-0003-0491-5649</orcidid><orcidid>https://orcid.org/0000-0001-6127-9349</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2021-07, Vol.22 (7), p.4507-4518
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2020_3017882
source IEEE Electronic Library (IEL)
subjects Algorithms
autoencoder
Autonomous vehicles
CAN bus
Computer architecture
Computer crime
Computer networks
Cybersecurity
Datasets
Deep learning
Denial of service attacks
Gateways
Intelligent transport systems
Intelligent transportation systems
Internet of Vehicles
Intrusion detection
intrusion detection system
Intrusion detection systems
LSTM
Machine learning
Security management
Short term
Spoofing
Training
Transportation networks
title Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Deep%20Learning-Enabled%20LSTM%20Autoencoder%20Architecture%20for%20Discovering%20Anomalous%20Events%20From%20Intelligent%20Transportation%20Systems&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ashraf,%20Javed&rft.date=2021-07-01&rft.volume=22&rft.issue=7&rft.spage=4507&rft.epage=4518&rft.pages=4507-4518&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3017882&rft_dat=%3Cproquest_RIE%3E2551362586%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551362586&rft_id=info:pmid/&rft_ieee_id=9198908&rfr_iscdi=true