Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems
Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniq...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2021-07, Vol.22 (7), p.4507-4518 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4518 |
---|---|
container_issue | 7 |
container_start_page | 4507 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 22 |
creator | Ashraf, Javed Bakhshi, Asim D. Moustafa, Nour Khurshid, Hasnat Javed, Abdullah Beheshti, Amin |
description | Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques. |
doi_str_mv | 10.1109/TITS.2020.3017882 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2020_3017882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9198908</ieee_id><sourcerecordid>2551362586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33</originalsourceid><addsrcrecordid>eNo9kMtOwzAURCMEEqXwAYiNJdYpfsRJvKz6gEoFFg3ryHGuS6rELrZTqVu-nFStWN3RaGaudKLokeAJIVi8FKtiM6GY4gnDJMtzehWNCOd5jDFJr0-aJrHAHN9Gd97vBjfhhIyi3w97gBbNAfZoDdKZxmzjhZFVCzVab4p3NO2DBaNsDQ5NnfpuAqjQO0DaOjRvvBoG3NBCU2M72dreo8UBTPBo6WyHViZA2zbbwUGFk8bvrQsyNNagzdEH6Px9dKNl6-HhcsfR13JRzN7i9efrajZdx4oKFmIOlUgrotMsq3JWV0zVWSI1kznUXAslk1TyRIMQlDKpBdAKKwGaMCWlrBgbR8_n3b2zPz34UO5s78zwsqScE5ZSnqdDipxTylnvHehy75pOumNJcHlCXZ5QlyfU5QX10Hk6dxoA-M8LInKBc_YHhax-AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551362586</pqid></control><display><type>article</type><title>Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ashraf, Javed ; Bakhshi, Asim D. ; Moustafa, Nour ; Khurshid, Hasnat ; Javed, Abdullah ; Beheshti, Amin</creator><creatorcontrib>Ashraf, Javed ; Bakhshi, Asim D. ; Moustafa, Nour ; Khurshid, Hasnat ; Javed, Abdullah ; Beheshti, Amin</creatorcontrib><description>Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3017882</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; autoencoder ; Autonomous vehicles ; CAN bus ; Computer architecture ; Computer crime ; Computer networks ; Cybersecurity ; Datasets ; Deep learning ; Denial of service attacks ; Gateways ; Intelligent transport systems ; Intelligent transportation systems ; Internet of Vehicles ; Intrusion detection ; intrusion detection system ; Intrusion detection systems ; LSTM ; Machine learning ; Security management ; Short term ; Spoofing ; Training ; Transportation networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-07, Vol.22 (7), p.4507-4518</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33</citedby><cites>FETCH-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33</cites><orcidid>0000-0002-9516-9153 ; 0000-0003-0491-5649 ; 0000-0001-6127-9349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9198908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9198908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ashraf, Javed</creatorcontrib><creatorcontrib>Bakhshi, Asim D.</creatorcontrib><creatorcontrib>Moustafa, Nour</creatorcontrib><creatorcontrib>Khurshid, Hasnat</creatorcontrib><creatorcontrib>Javed, Abdullah</creatorcontrib><creatorcontrib>Beheshti, Amin</creatorcontrib><title>Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques.</description><subject>Algorithms</subject><subject>autoencoder</subject><subject>Autonomous vehicles</subject><subject>CAN bus</subject><subject>Computer architecture</subject><subject>Computer crime</subject><subject>Computer networks</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Denial of service attacks</subject><subject>Gateways</subject><subject>Intelligent transport systems</subject><subject>Intelligent transportation systems</subject><subject>Internet of Vehicles</subject><subject>Intrusion detection</subject><subject>intrusion detection system</subject><subject>Intrusion detection systems</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Security management</subject><subject>Short term</subject><subject>Spoofing</subject><subject>Training</subject><subject>Transportation networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURCMEEqXwAYiNJdYpfsRJvKz6gEoFFg3ryHGuS6rELrZTqVu-nFStWN3RaGaudKLokeAJIVi8FKtiM6GY4gnDJMtzehWNCOd5jDFJr0-aJrHAHN9Gd97vBjfhhIyi3w97gBbNAfZoDdKZxmzjhZFVCzVab4p3NO2DBaNsDQ5NnfpuAqjQO0DaOjRvvBoG3NBCU2M72dreo8UBTPBo6WyHViZA2zbbwUGFk8bvrQsyNNagzdEH6Px9dKNl6-HhcsfR13JRzN7i9efrajZdx4oKFmIOlUgrotMsq3JWV0zVWSI1kznUXAslk1TyRIMQlDKpBdAKKwGaMCWlrBgbR8_n3b2zPz34UO5s78zwsqScE5ZSnqdDipxTylnvHehy75pOumNJcHlCXZ5QlyfU5QX10Hk6dxoA-M8LInKBc_YHhax-AA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ashraf, Javed</creator><creator>Bakhshi, Asim D.</creator><creator>Moustafa, Nour</creator><creator>Khurshid, Hasnat</creator><creator>Javed, Abdullah</creator><creator>Beheshti, Amin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9516-9153</orcidid><orcidid>https://orcid.org/0000-0003-0491-5649</orcidid><orcidid>https://orcid.org/0000-0001-6127-9349</orcidid></search><sort><creationdate>20210701</creationdate><title>Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems</title><author>Ashraf, Javed ; Bakhshi, Asim D. ; Moustafa, Nour ; Khurshid, Hasnat ; Javed, Abdullah ; Beheshti, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5eb96b1f677b83db3cd74af3a8ed5f9ca46a54fe99223af9e2b0c9ef13caaab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>autoencoder</topic><topic>Autonomous vehicles</topic><topic>CAN bus</topic><topic>Computer architecture</topic><topic>Computer crime</topic><topic>Computer networks</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Denial of service attacks</topic><topic>Gateways</topic><topic>Intelligent transport systems</topic><topic>Intelligent transportation systems</topic><topic>Internet of Vehicles</topic><topic>Intrusion detection</topic><topic>intrusion detection system</topic><topic>Intrusion detection systems</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Security management</topic><topic>Short term</topic><topic>Spoofing</topic><topic>Training</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashraf, Javed</creatorcontrib><creatorcontrib>Bakhshi, Asim D.</creatorcontrib><creatorcontrib>Moustafa, Nour</creatorcontrib><creatorcontrib>Khurshid, Hasnat</creatorcontrib><creatorcontrib>Javed, Abdullah</creatorcontrib><creatorcontrib>Beheshti, Amin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ashraf, Javed</au><au>Bakhshi, Asim D.</au><au>Moustafa, Nour</au><au>Khurshid, Hasnat</au><au>Javed, Abdullah</au><au>Beheshti, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>22</volume><issue>7</issue><spage>4507</spage><epage>4518</epage><pages>4507-4518</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Intelligent Transportation Systems (ITS), especially Autonomous Vehicles (AVs), are vulnerable to security and safety issues that threaten the lives of the people. Unlike manual vehicles, the security of communications and computing components of AVs can be compromised using advanced hacking techniques, thus barring AVs from the effective use in our routine lives. Once manual vehicles are connected to the Internet, called the Internet of Vehicles (IoVs), it would be exploited by cyber-attacks, like denial of service, sniffing, distributed denial of service, spoofing and replay attacks. In this article, we present a deep learning-based Intrusion Detection System (IDS) for ITS, in particular, to discover suspicious network activity of In-Vehicles Networks (IVN), vehicles to vehicles (V2V) communications and vehicles to infrastructure (V2I) networks. A Deep Learning architecture-based Long-Short Term Memory (LSTM) autoencoder algorithm is designed to recognize intrusive events from the central network gateways of AVs. The proposed IDS is evaluated using two benchmark datasets, i.e., the car hacking dataset for in-vehicle communications and the UNSW-NB15 dataset for external network communications. The experimental results demonstrated that our proposed system achieved over a 99% accuracy for detecting all types of attacks on the car hacking dataset and a 98% accuracy on the UNSW-NB15 dataset, outperforming other eight intrusion detection techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3017882</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9516-9153</orcidid><orcidid>https://orcid.org/0000-0003-0491-5649</orcidid><orcidid>https://orcid.org/0000-0001-6127-9349</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2021-07, Vol.22 (7), p.4507-4518 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2020_3017882 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms autoencoder Autonomous vehicles CAN bus Computer architecture Computer crime Computer networks Cybersecurity Datasets Deep learning Denial of service attacks Gateways Intelligent transport systems Intelligent transportation systems Internet of Vehicles Intrusion detection intrusion detection system Intrusion detection systems LSTM Machine learning Security management Short term Spoofing Training Transportation networks |
title | Novel Deep Learning-Enabled LSTM Autoencoder Architecture for Discovering Anomalous Events From Intelligent Transportation Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Deep%20Learning-Enabled%20LSTM%20Autoencoder%20Architecture%20for%20Discovering%20Anomalous%20Events%20From%20Intelligent%20Transportation%20Systems&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ashraf,%20Javed&rft.date=2021-07-01&rft.volume=22&rft.issue=7&rft.spage=4507&rft.epage=4518&rft.pages=4507-4518&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3017882&rft_dat=%3Cproquest_RIE%3E2551362586%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551362586&rft_id=info:pmid/&rft_ieee_id=9198908&rfr_iscdi=true |