Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning
Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drive...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2021-04, Vol.22 (4), p.2314-2325 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2325 |
---|---|
container_issue | 4 |
container_start_page | 2314 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 22 |
creator | Zhao, Yinuo Liu, Chi Harold |
description | Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drivers may form "virtual" mobile communities, called Vehicular Social Networks (VSNs). It offers an opportunity to include social network effect into incentive mechanism design where a driver can benefit from others' sensing strategy in one VSN. In this paper, we consider a non-cooperative VCS campaign where multiple vehicles are incentivized by dynamically priced tasks and social network effect. In order to maximize the overall utility of vehicle drivers, we propose a social-aware incentive mechanism by deep reinforcement learning (called DRL-SIM), to derive the optimal long term sensing strategy for all vehicles. Finally, numerical results are supplemented to show both the convergence and the effectiveness of DRL-SIM when compared with other baselines. |
doi_str_mv | 10.1109/TITS.2020.3014263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2020_3014263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9173810</ieee_id><sourcerecordid>2509075697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f2689c7ef9df46cb2e6b6bf23e028a7c760c988958134c94f8fb5771ce4c61e53</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG9Nspuvo9SvQkWw1YOXkE0nNqXN1qS19N-7S4unGWaedwYehK4pGVBK9N10NJ0MGGFkUBJaMVGeoB7lXBWEUHHa9awqNOHkHF3kvGinFae0h74mjQt2WdzvbAI8ig7iJvwCfgU3tzHkFfZNwp8wD267tAkPU7ObZYg5xG9c7_EDwBq_Q4gt5mDVpvEYbIrt-hKdebvMcHWsffTx9DgdvhTjt-fR8H5cOKbLTeGZUNpJ8HrmK-FqBqIWtWclEKasdFIQp5XSXNGycrryytdcSuqgcoICL_vo9nB3nZqfLeSNWTTbFNuXhnGiieRCy5aiB8qlJucE3qxTWNm0N5SYTqHpFJpOoTkqbDM3h0wAgH9eU1kqSso_LiJtTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509075697</pqid></control><display><type>article</type><title>Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning</title><source>IEEE Electronic Library Online</source><creator>Zhao, Yinuo ; Liu, Chi Harold</creator><creatorcontrib>Zhao, Yinuo ; Liu, Chi Harold</creatorcontrib><description>Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drivers may form "virtual" mobile communities, called Vehicular Social Networks (VSNs). It offers an opportunity to include social network effect into incentive mechanism design where a driver can benefit from others' sensing strategy in one VSN. In this paper, we consider a non-cooperative VCS campaign where multiple vehicles are incentivized by dynamically priced tasks and social network effect. In order to maximize the overall utility of vehicle drivers, we propose a social-aware incentive mechanism by deep reinforcement learning (called DRL-SIM), to derive the optimal long term sensing strategy for all vehicles. Finally, numerical results are supplemented to show both the convergence and the effectiveness of DRL-SIM when compared with other baselines.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3014263</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Crowdsensing ; Deep learning ; deep reinforcement learning ; Electronic devices ; incentive mechanism ; Reinforcement learning ; Roads ; Sensors ; Servers ; social information ; Social networking (online) ; Social networks ; Task analysis ; Vehicles ; Vehicular crowdsensing</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-04, Vol.22 (4), p.2314-2325</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f2689c7ef9df46cb2e6b6bf23e028a7c760c988958134c94f8fb5771ce4c61e53</citedby><cites>FETCH-LOGICAL-c293t-f2689c7ef9df46cb2e6b6bf23e028a7c760c988958134c94f8fb5771ce4c61e53</cites><orcidid>0000-0002-0252-329X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9173810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9173810$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yinuo</creatorcontrib><creatorcontrib>Liu, Chi Harold</creatorcontrib><title>Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drivers may form "virtual" mobile communities, called Vehicular Social Networks (VSNs). It offers an opportunity to include social network effect into incentive mechanism design where a driver can benefit from others' sensing strategy in one VSN. In this paper, we consider a non-cooperative VCS campaign where multiple vehicles are incentivized by dynamically priced tasks and social network effect. In order to maximize the overall utility of vehicle drivers, we propose a social-aware incentive mechanism by deep reinforcement learning (called DRL-SIM), to derive the optimal long term sensing strategy for all vehicles. Finally, numerical results are supplemented to show both the convergence and the effectiveness of DRL-SIM when compared with other baselines.</description><subject>Crowdsensing</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Electronic devices</subject><subject>incentive mechanism</subject><subject>Reinforcement learning</subject><subject>Roads</subject><subject>Sensors</subject><subject>Servers</subject><subject>social information</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>Vehicles</subject><subject>Vehicular crowdsensing</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG9Nspuvo9SvQkWw1YOXkE0nNqXN1qS19N-7S4unGWaedwYehK4pGVBK9N10NJ0MGGFkUBJaMVGeoB7lXBWEUHHa9awqNOHkHF3kvGinFae0h74mjQt2WdzvbAI8ig7iJvwCfgU3tzHkFfZNwp8wD267tAkPU7ObZYg5xG9c7_EDwBq_Q4gt5mDVpvEYbIrt-hKdebvMcHWsffTx9DgdvhTjt-fR8H5cOKbLTeGZUNpJ8HrmK-FqBqIWtWclEKasdFIQp5XSXNGycrryytdcSuqgcoICL_vo9nB3nZqfLeSNWTTbFNuXhnGiieRCy5aiB8qlJucE3qxTWNm0N5SYTqHpFJpOoTkqbDM3h0wAgH9eU1kqSso_LiJtTw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhao, Yinuo</creator><creator>Liu, Chi Harold</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0252-329X</orcidid></search><sort><creationdate>20210401</creationdate><title>Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning</title><author>Zhao, Yinuo ; Liu, Chi Harold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f2689c7ef9df46cb2e6b6bf23e028a7c760c988958134c94f8fb5771ce4c61e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crowdsensing</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Electronic devices</topic><topic>incentive mechanism</topic><topic>Reinforcement learning</topic><topic>Roads</topic><topic>Sensors</topic><topic>Servers</topic><topic>social information</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>Vehicles</topic><topic>Vehicular crowdsensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yinuo</creatorcontrib><creatorcontrib>Liu, Chi Harold</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yinuo</au><au>Liu, Chi Harold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>22</volume><issue>4</issue><spage>2314</spage><epage>2325</epage><pages>2314-2325</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drivers may form "virtual" mobile communities, called Vehicular Social Networks (VSNs). It offers an opportunity to include social network effect into incentive mechanism design where a driver can benefit from others' sensing strategy in one VSN. In this paper, we consider a non-cooperative VCS campaign where multiple vehicles are incentivized by dynamically priced tasks and social network effect. In order to maximize the overall utility of vehicle drivers, we propose a social-aware incentive mechanism by deep reinforcement learning (called DRL-SIM), to derive the optimal long term sensing strategy for all vehicles. Finally, numerical results are supplemented to show both the convergence and the effectiveness of DRL-SIM when compared with other baselines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3014263</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0252-329X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2021-04, Vol.22 (4), p.2314-2325 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2020_3014263 |
source | IEEE Electronic Library Online |
subjects | Crowdsensing Deep learning deep reinforcement learning Electronic devices incentive mechanism Reinforcement learning Roads Sensors Servers social information Social networking (online) Social networks Task analysis Vehicles Vehicular crowdsensing |
title | Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social-Aware%20Incentive%20Mechanism%20for%20Vehicular%20Crowdsensing%20by%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhao,%20Yinuo&rft.date=2021-04-01&rft.volume=22&rft.issue=4&rft.spage=2314&rft.epage=2325&rft.pages=2314-2325&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3014263&rft_dat=%3Cproquest_RIE%3E2509075697%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509075697&rft_id=info:pmid/&rft_ieee_id=9173810&rfr_iscdi=true |