Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning

Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-04, Vol.22 (4), p.2314-2325
Hauptverfasser: Zhao, Yinuo, Liu, Chi Harold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2325
container_issue 4
container_start_page 2314
container_title IEEE transactions on intelligent transportation systems
container_volume 22
creator Zhao, Yinuo
Liu, Chi Harold
description Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drivers may form "virtual" mobile communities, called Vehicular Social Networks (VSNs). It offers an opportunity to include social network effect into incentive mechanism design where a driver can benefit from others' sensing strategy in one VSN. In this paper, we consider a non-cooperative VCS campaign where multiple vehicles are incentivized by dynamically priced tasks and social network effect. In order to maximize the overall utility of vehicle drivers, we propose a social-aware incentive mechanism by deep reinforcement learning (called DRL-SIM), to derive the optimal long term sensing strategy for all vehicles. Finally, numerical results are supplemented to show both the convergence and the effectiveness of DRL-SIM when compared with other baselines.
doi_str_mv 10.1109/TITS.2020.3014263
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2020_3014263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9173810</ieee_id><sourcerecordid>2509075697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f2689c7ef9df46cb2e6b6bf23e028a7c760c988958134c94f8fb5771ce4c61e53</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG9Nspuvo9SvQkWw1YOXkE0nNqXN1qS19N-7S4unGWaedwYehK4pGVBK9N10NJ0MGGFkUBJaMVGeoB7lXBWEUHHa9awqNOHkHF3kvGinFae0h74mjQt2WdzvbAI8ig7iJvwCfgU3tzHkFfZNwp8wD267tAkPU7ObZYg5xG9c7_EDwBq_Q4gt5mDVpvEYbIrt-hKdebvMcHWsffTx9DgdvhTjt-fR8H5cOKbLTeGZUNpJ8HrmK-FqBqIWtWclEKasdFIQp5XSXNGycrryytdcSuqgcoICL_vo9nB3nZqfLeSNWTTbFNuXhnGiieRCy5aiB8qlJucE3qxTWNm0N5SYTqHpFJpOoTkqbDM3h0wAgH9eU1kqSso_LiJtTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509075697</pqid></control><display><type>article</type><title>Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning</title><source>IEEE Electronic Library Online</source><creator>Zhao, Yinuo ; Liu, Chi Harold</creator><creatorcontrib>Zhao, Yinuo ; Liu, Chi Harold</creatorcontrib><description>Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drivers may form "virtual" mobile communities, called Vehicular Social Networks (VSNs). It offers an opportunity to include social network effect into incentive mechanism design where a driver can benefit from others' sensing strategy in one VSN. In this paper, we consider a non-cooperative VCS campaign where multiple vehicles are incentivized by dynamically priced tasks and social network effect. In order to maximize the overall utility of vehicle drivers, we propose a social-aware incentive mechanism by deep reinforcement learning (called DRL-SIM), to derive the optimal long term sensing strategy for all vehicles. Finally, numerical results are supplemented to show both the convergence and the effectiveness of DRL-SIM when compared with other baselines.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3014263</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Crowdsensing ; Deep learning ; deep reinforcement learning ; Electronic devices ; incentive mechanism ; Reinforcement learning ; Roads ; Sensors ; Servers ; social information ; Social networking (online) ; Social networks ; Task analysis ; Vehicles ; Vehicular crowdsensing</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-04, Vol.22 (4), p.2314-2325</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f2689c7ef9df46cb2e6b6bf23e028a7c760c988958134c94f8fb5771ce4c61e53</citedby><cites>FETCH-LOGICAL-c293t-f2689c7ef9df46cb2e6b6bf23e028a7c760c988958134c94f8fb5771ce4c61e53</cites><orcidid>0000-0002-0252-329X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9173810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9173810$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yinuo</creatorcontrib><creatorcontrib>Liu, Chi Harold</creatorcontrib><title>Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drivers may form "virtual" mobile communities, called Vehicular Social Networks (VSNs). It offers an opportunity to include social network effect into incentive mechanism design where a driver can benefit from others' sensing strategy in one VSN. In this paper, we consider a non-cooperative VCS campaign where multiple vehicles are incentivized by dynamically priced tasks and social network effect. In order to maximize the overall utility of vehicle drivers, we propose a social-aware incentive mechanism by deep reinforcement learning (called DRL-SIM), to derive the optimal long term sensing strategy for all vehicles. Finally, numerical results are supplemented to show both the convergence and the effectiveness of DRL-SIM when compared with other baselines.</description><subject>Crowdsensing</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Electronic devices</subject><subject>incentive mechanism</subject><subject>Reinforcement learning</subject><subject>Roads</subject><subject>Sensors</subject><subject>Servers</subject><subject>social information</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>Vehicles</subject><subject>Vehicular crowdsensing</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG9Nspuvo9SvQkWw1YOXkE0nNqXN1qS19N-7S4unGWaedwYehK4pGVBK9N10NJ0MGGFkUBJaMVGeoB7lXBWEUHHa9awqNOHkHF3kvGinFae0h74mjQt2WdzvbAI8ig7iJvwCfgU3tzHkFfZNwp8wD267tAkPU7ObZYg5xG9c7_EDwBq_Q4gt5mDVpvEYbIrt-hKdebvMcHWsffTx9DgdvhTjt-fR8H5cOKbLTeGZUNpJ8HrmK-FqBqIWtWclEKasdFIQp5XSXNGycrryytdcSuqgcoICL_vo9nB3nZqfLeSNWTTbFNuXhnGiieRCy5aiB8qlJucE3qxTWNm0N5SYTqHpFJpOoTkqbDM3h0wAgH9eU1kqSso_LiJtTw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhao, Yinuo</creator><creator>Liu, Chi Harold</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0252-329X</orcidid></search><sort><creationdate>20210401</creationdate><title>Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning</title><author>Zhao, Yinuo ; Liu, Chi Harold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f2689c7ef9df46cb2e6b6bf23e028a7c760c988958134c94f8fb5771ce4c61e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crowdsensing</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Electronic devices</topic><topic>incentive mechanism</topic><topic>Reinforcement learning</topic><topic>Roads</topic><topic>Sensors</topic><topic>Servers</topic><topic>social information</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>Vehicles</topic><topic>Vehicular crowdsensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yinuo</creatorcontrib><creatorcontrib>Liu, Chi Harold</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yinuo</au><au>Liu, Chi Harold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>22</volume><issue>4</issue><spage>2314</spage><epage>2325</epage><pages>2314-2325</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Vehicular crowdsensing (VCS) takes the advantage of vehicles' mobility and exploits both the crowd wisdom and sensing abilities offered by vehicle drivers' carried smart mobile devices and on-board sensors to accomplish challenging sensing tasks. The daily roadway commutes of vehicle drivers may form "virtual" mobile communities, called Vehicular Social Networks (VSNs). It offers an opportunity to include social network effect into incentive mechanism design where a driver can benefit from others' sensing strategy in one VSN. In this paper, we consider a non-cooperative VCS campaign where multiple vehicles are incentivized by dynamically priced tasks and social network effect. In order to maximize the overall utility of vehicle drivers, we propose a social-aware incentive mechanism by deep reinforcement learning (called DRL-SIM), to derive the optimal long term sensing strategy for all vehicles. Finally, numerical results are supplemented to show both the convergence and the effectiveness of DRL-SIM when compared with other baselines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3014263</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0252-329X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2021-04, Vol.22 (4), p.2314-2325
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2020_3014263
source IEEE Electronic Library Online
subjects Crowdsensing
Deep learning
deep reinforcement learning
Electronic devices
incentive mechanism
Reinforcement learning
Roads
Sensors
Servers
social information
Social networking (online)
Social networks
Task analysis
Vehicles
Vehicular crowdsensing
title Social-Aware Incentive Mechanism for Vehicular Crowdsensing by Deep Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Social-Aware%20Incentive%20Mechanism%20for%20Vehicular%20Crowdsensing%20by%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhao,%20Yinuo&rft.date=2021-04-01&rft.volume=22&rft.issue=4&rft.spage=2314&rft.epage=2325&rft.pages=2314-2325&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3014263&rft_dat=%3Cproquest_RIE%3E2509075697%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509075697&rft_id=info:pmid/&rft_ieee_id=9173810&rfr_iscdi=true