Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior

Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-09, Vol.22 (9), p.5453-5472
Hauptverfasser: Camara, Fanta, Bellotto, Nicola, Cosar, Serhan, Weber, Florian, Nathanael, Dimitris, Althoff, Matthias, Wu, Jingyuan, Ruenz, Johannes, Dietrich, Andre, Markkula, Gustav, Schieben, Anna, Tango, Fabio, Merat, Natasha, Fox, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5472
container_issue 9
container_start_page 5453
container_title IEEE transactions on intelligent transportation systems
container_volume 22
creator Camara, Fanta
Bellotto, Nicola
Cosar, Serhan
Weber, Florian
Nathanael, Dimitris
Althoff, Matthias
Wu, Jingyuan
Ruenz, Johannes
Dietrich, Andre
Markkula, Gustav
Schieben, Anna
Tango, Fabio
Merat, Natasha
Fox, Charles
description Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, interactive motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behavior as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychological models, from the perspective of an AV designer. This self-contained Part II covers the higher levels of this stack, consisting of models of pedestrian behavior, from prediction of individual pedestrians' likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behavior, high-level psychological and social modelling of pedestrian behavior still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behavior, but much work is still needed to translate them into quantitative algorithms for practical AV control.
doi_str_mv 10.1109/TITS.2020.3006767
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2020_3006767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9151337</ieee_id><sourcerecordid>2568069795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-32ac8bb6a8cd4c5a05fe14e69a3118712e56b6901616c4bfcf8440e72481f8183</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOKd_gPgS8Lkzt_lo6tv8XGHiwO05pF2yZWzNTNqB_70tmz7dy-Wcczk_hG6BjABI_jAv5l-jlKRkRAkRmcjO0AA4lwkhIM77PWVJTji5RFcxbror4wADtJiZpYlNcLrGH35pthFbH_C4bXztd76N-CW4g6tXeKZDg4viEU_cap1MzcFs_xze4km76xKezFofnA_X6MLqbTQ3pzlEi7fX-fMkmX6-F8_jaVJRKpqEprqSZSm0rJas4ppwa4AZkWsKIDNIDRelyLsGICpW2spKxojJUibBSpB0iO6Pufvgv9uuh9r4NtTdS5VyIYnIs5x3KjiqquBjDMaqfXA7HX4UENXTUz091dNTJ3qd5-7occaYf30OHCjN6C9bgWnX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568069795</pqid></control><display><type>article</type><title>Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior</title><source>IEEE Electronic Library (IEL)</source><creator>Camara, Fanta ; Bellotto, Nicola ; Cosar, Serhan ; Weber, Florian ; Nathanael, Dimitris ; Althoff, Matthias ; Wu, Jingyuan ; Ruenz, Johannes ; Dietrich, Andre ; Markkula, Gustav ; Schieben, Anna ; Tango, Fabio ; Merat, Natasha ; Fox, Charles</creator><creatorcontrib>Camara, Fanta ; Bellotto, Nicola ; Cosar, Serhan ; Weber, Florian ; Nathanael, Dimitris ; Althoff, Matthias ; Wu, Jingyuan ; Ruenz, Johannes ; Dietrich, Andre ; Markkula, Gustav ; Schieben, Anna ; Tango, Fabio ; Merat, Natasha ; Fox, Charles</creatorcontrib><description>Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, interactive motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behavior as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychological models, from the perspective of an AV designer. This self-contained Part II covers the higher levels of this stack, consisting of models of pedestrian behavior, from prediction of individual pedestrians' likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behavior, high-level psychological and social modelling of pedestrian behavior still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behavior, but much work is still needed to translate them into quantitative algorithms for practical AV control.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3006767</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automobiles ; Autonomous vehicles ; datasets ; detection ; eHMI ; Game theory ; game-theoretic models ; Hidden Markov models ; Human behavior ; Image detection ; Legged locomotion ; Machine learning ; microscopic and macroscopic behavior models ; Modelling ; Pedestrian crossings ; pedestrian interaction ; Pedestrians ; Predictive models ; Psychology ; Review ; sensing ; signalling models ; survey ; Taxonomy ; tracking ; Trajectory ; trajectory prediction</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-09, Vol.22 (9), p.5453-5472</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-32ac8bb6a8cd4c5a05fe14e69a3118712e56b6901616c4bfcf8440e72481f8183</citedby><cites>FETCH-LOGICAL-c336t-32ac8bb6a8cd4c5a05fe14e69a3118712e56b6901616c4bfcf8440e72481f8183</cites><orcidid>0000-0002-6695-8081 ; 0000-0003-4140-9948 ; 0000-0002-0933-8556 ; 0000-0003-3733-842X ; 0000-0003-2361-549X ; 0000-0002-2655-1228 ; 0000-0001-7950-9608 ; 0000-0003-0244-1582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9151337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9151337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Camara, Fanta</creatorcontrib><creatorcontrib>Bellotto, Nicola</creatorcontrib><creatorcontrib>Cosar, Serhan</creatorcontrib><creatorcontrib>Weber, Florian</creatorcontrib><creatorcontrib>Nathanael, Dimitris</creatorcontrib><creatorcontrib>Althoff, Matthias</creatorcontrib><creatorcontrib>Wu, Jingyuan</creatorcontrib><creatorcontrib>Ruenz, Johannes</creatorcontrib><creatorcontrib>Dietrich, Andre</creatorcontrib><creatorcontrib>Markkula, Gustav</creatorcontrib><creatorcontrib>Schieben, Anna</creatorcontrib><creatorcontrib>Tango, Fabio</creatorcontrib><creatorcontrib>Merat, Natasha</creatorcontrib><creatorcontrib>Fox, Charles</creatorcontrib><title>Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, interactive motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behavior as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychological models, from the perspective of an AV designer. This self-contained Part II covers the higher levels of this stack, consisting of models of pedestrian behavior, from prediction of individual pedestrians' likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behavior, high-level psychological and social modelling of pedestrian behavior still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behavior, but much work is still needed to translate them into quantitative algorithms for practical AV control.</description><subject>Algorithms</subject><subject>Automobiles</subject><subject>Autonomous vehicles</subject><subject>datasets</subject><subject>detection</subject><subject>eHMI</subject><subject>Game theory</subject><subject>game-theoretic models</subject><subject>Hidden Markov models</subject><subject>Human behavior</subject><subject>Image detection</subject><subject>Legged locomotion</subject><subject>Machine learning</subject><subject>microscopic and macroscopic behavior models</subject><subject>Modelling</subject><subject>Pedestrian crossings</subject><subject>pedestrian interaction</subject><subject>Pedestrians</subject><subject>Predictive models</subject><subject>Psychology</subject><subject>Review</subject><subject>sensing</subject><subject>signalling models</subject><subject>survey</subject><subject>Taxonomy</subject><subject>tracking</subject><subject>Trajectory</subject><subject>trajectory prediction</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOKd_gPgS8Lkzt_lo6tv8XGHiwO05pF2yZWzNTNqB_70tmz7dy-Wcczk_hG6BjABI_jAv5l-jlKRkRAkRmcjO0AA4lwkhIM77PWVJTji5RFcxbror4wADtJiZpYlNcLrGH35pthFbH_C4bXztd76N-CW4g6tXeKZDg4viEU_cap1MzcFs_xze4km76xKezFofnA_X6MLqbTQ3pzlEi7fX-fMkmX6-F8_jaVJRKpqEprqSZSm0rJas4ppwa4AZkWsKIDNIDRelyLsGICpW2spKxojJUibBSpB0iO6Pufvgv9uuh9r4NtTdS5VyIYnIs5x3KjiqquBjDMaqfXA7HX4UENXTUz091dNTJ3qd5-7occaYf30OHCjN6C9bgWnX</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Camara, Fanta</creator><creator>Bellotto, Nicola</creator><creator>Cosar, Serhan</creator><creator>Weber, Florian</creator><creator>Nathanael, Dimitris</creator><creator>Althoff, Matthias</creator><creator>Wu, Jingyuan</creator><creator>Ruenz, Johannes</creator><creator>Dietrich, Andre</creator><creator>Markkula, Gustav</creator><creator>Schieben, Anna</creator><creator>Tango, Fabio</creator><creator>Merat, Natasha</creator><creator>Fox, Charles</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6695-8081</orcidid><orcidid>https://orcid.org/0000-0003-4140-9948</orcidid><orcidid>https://orcid.org/0000-0002-0933-8556</orcidid><orcidid>https://orcid.org/0000-0003-3733-842X</orcidid><orcidid>https://orcid.org/0000-0003-2361-549X</orcidid><orcidid>https://orcid.org/0000-0002-2655-1228</orcidid><orcidid>https://orcid.org/0000-0001-7950-9608</orcidid><orcidid>https://orcid.org/0000-0003-0244-1582</orcidid></search><sort><creationdate>20210901</creationdate><title>Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior</title><author>Camara, Fanta ; Bellotto, Nicola ; Cosar, Serhan ; Weber, Florian ; Nathanael, Dimitris ; Althoff, Matthias ; Wu, Jingyuan ; Ruenz, Johannes ; Dietrich, Andre ; Markkula, Gustav ; Schieben, Anna ; Tango, Fabio ; Merat, Natasha ; Fox, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-32ac8bb6a8cd4c5a05fe14e69a3118712e56b6901616c4bfcf8440e72481f8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automobiles</topic><topic>Autonomous vehicles</topic><topic>datasets</topic><topic>detection</topic><topic>eHMI</topic><topic>Game theory</topic><topic>game-theoretic models</topic><topic>Hidden Markov models</topic><topic>Human behavior</topic><topic>Image detection</topic><topic>Legged locomotion</topic><topic>Machine learning</topic><topic>microscopic and macroscopic behavior models</topic><topic>Modelling</topic><topic>Pedestrian crossings</topic><topic>pedestrian interaction</topic><topic>Pedestrians</topic><topic>Predictive models</topic><topic>Psychology</topic><topic>Review</topic><topic>sensing</topic><topic>signalling models</topic><topic>survey</topic><topic>Taxonomy</topic><topic>tracking</topic><topic>Trajectory</topic><topic>trajectory prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camara, Fanta</creatorcontrib><creatorcontrib>Bellotto, Nicola</creatorcontrib><creatorcontrib>Cosar, Serhan</creatorcontrib><creatorcontrib>Weber, Florian</creatorcontrib><creatorcontrib>Nathanael, Dimitris</creatorcontrib><creatorcontrib>Althoff, Matthias</creatorcontrib><creatorcontrib>Wu, Jingyuan</creatorcontrib><creatorcontrib>Ruenz, Johannes</creatorcontrib><creatorcontrib>Dietrich, Andre</creatorcontrib><creatorcontrib>Markkula, Gustav</creatorcontrib><creatorcontrib>Schieben, Anna</creatorcontrib><creatorcontrib>Tango, Fabio</creatorcontrib><creatorcontrib>Merat, Natasha</creatorcontrib><creatorcontrib>Fox, Charles</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Camara, Fanta</au><au>Bellotto, Nicola</au><au>Cosar, Serhan</au><au>Weber, Florian</au><au>Nathanael, Dimitris</au><au>Althoff, Matthias</au><au>Wu, Jingyuan</au><au>Ruenz, Johannes</au><au>Dietrich, Andre</au><au>Markkula, Gustav</au><au>Schieben, Anna</au><au>Tango, Fabio</au><au>Merat, Natasha</au><au>Fox, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>22</volume><issue>9</issue><spage>5453</spage><epage>5472</epage><pages>5453-5472</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Autonomous vehicles (AVs) must share space with pedestrians, both in carriageway cases such as cars at pedestrian crossings and off-carriageway cases such as delivery vehicles navigating through crowds on pedestrianized high-streets. Unlike static obstacles, pedestrians are active agents with complex, interactive motions. Planning AV actions in the presence of pedestrians thus requires modelling of their probable future behavior as well as detecting and tracking them. This narrative review article is Part II of a pair, together surveying the current technology stack involved in this process, organising recent research into a hierarchical taxonomy ranging from low-level image detection to high-level psychological models, from the perspective of an AV designer. This self-contained Part II covers the higher levels of this stack, consisting of models of pedestrian behavior, from prediction of individual pedestrians' likely destinations and paths, to game-theoretic models of interactions between pedestrians and autonomous vehicles. This survey clearly shows that, although there are good models for optimal walking behavior, high-level psychological and social modelling of pedestrian behavior still remains an open research question that requires many conceptual issues to be clarified. Early work has been done on descriptive and qualitative models of behavior, but much work is still needed to translate them into quantitative algorithms for practical AV control.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3006767</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6695-8081</orcidid><orcidid>https://orcid.org/0000-0003-4140-9948</orcidid><orcidid>https://orcid.org/0000-0002-0933-8556</orcidid><orcidid>https://orcid.org/0000-0003-3733-842X</orcidid><orcidid>https://orcid.org/0000-0003-2361-549X</orcidid><orcidid>https://orcid.org/0000-0002-2655-1228</orcidid><orcidid>https://orcid.org/0000-0001-7950-9608</orcidid><orcidid>https://orcid.org/0000-0003-0244-1582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2021-09, Vol.22 (9), p.5453-5472
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2020_3006767
source IEEE Electronic Library (IEL)
subjects Algorithms
Automobiles
Autonomous vehicles
datasets
detection
eHMI
Game theory
game-theoretic models
Hidden Markov models
Human behavior
Image detection
Legged locomotion
Machine learning
microscopic and macroscopic behavior models
Modelling
Pedestrian crossings
pedestrian interaction
Pedestrians
Predictive models
Psychology
Review
sensing
signalling models
survey
Taxonomy
tracking
Trajectory
trajectory prediction
title Pedestrian Models for Autonomous Driving Part II: High-Level Models of Human Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pedestrian%20Models%20for%20Autonomous%20Driving%20Part%20II:%20High-Level%20Models%20of%20Human%20Behavior&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Camara,%20Fanta&rft.date=2021-09-01&rft.volume=22&rft.issue=9&rft.spage=5453&rft.epage=5472&rft.pages=5453-5472&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3006767&rft_dat=%3Cproquest_RIE%3E2568069795%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568069795&rft_id=info:pmid/&rft_ieee_id=9151337&rfr_iscdi=true