Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction

As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-11, Vol.22 (11), p.7169-7183
Hauptverfasser: Liu, Lingbo, Zhen, Jiajie, Li, Guanbin, Zhan, Geng, He, Zhaocheng, Du, Bowen, Lin, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7183
container_issue 11
container_start_page 7169
container_title IEEE transactions on intelligent transportation systems
container_volume 22
creator Liu, Lingbo
Zhen, Jiajie
Li, Guanbin
Zhan, Geng
He, Zhaocheng
Du, Bowen
Lin, Liang
description As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM [1] ) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at https://github.com/liulingbo918/ATFM .
doi_str_mv 10.1109/TITS.2020.3002718
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2020_3002718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9127874</ieee_id><sourcerecordid>2592620112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-4daa3be9a80367c15759614135f736e6400e0765348953a22f5dcf49ebd791c03</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2Y9s9ijVaiGg2HhetsmspKRJ3ESk_96EFk8zvDzvDDyM3SIsEME85Ot8s-DAYSEAuMb0jM1QqTQGwOR82rmMDSi4ZFd9vxtTqRBnLHs6NG5fFdGmc0Pl6jinfdcGV0cf1AXqqRnGvG2ijFxoquYr8m2I8uC8H0uruv2N3gOVVTFB1-zCu7qnm9Ocs8_Vc758jbO3l_XyMYsLkcohlqVzYkvGpSASXaDSyiQoUSivRUKJBCDQiRIyNUo4zr0qCy8NbUttsAAxZ_fHu11ov3-oH-yu_QnN-NJyZXjCAZGPFB6pIrR9H8jbLlR7Fw4WwU7S7CTNTtLsSdrYuTt2KiL65w1ynWop_gDGvGcv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592620112</pqid></control><display><type>article</type><title>Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Lingbo ; Zhen, Jiajie ; Li, Guanbin ; Zhan, Geng ; He, Zhaocheng ; Du, Bowen ; Lin, Liang</creator><creatorcontrib>Liu, Lingbo ; Zhen, Jiajie ; Li, Guanbin ; Zhan, Geng ; He, Zhaocheng ; Du, Bowen ; Lin, Liang</creatorcontrib><description>As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM &lt;xref ref-type="bibr" rid="ref1"&gt;[1] ) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at https://github.com/liulingbo918/ATFM .</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3002718</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; attentional recurrent neural network ; Deep learning ; Feature extraction ; Intelligent transportation systems ; mobility data ; Neural networks ; Predictive models ; Representations ; Spatial dependencies ; spatial-temporal modeling ; Task analysis ; Traffic flow ; Traffic flow prediction ; Urban areas</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-11, Vol.22 (11), p.7169-7183</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-4daa3be9a80367c15759614135f736e6400e0765348953a22f5dcf49ebd791c03</citedby><cites>FETCH-LOGICAL-c384t-4daa3be9a80367c15759614135f736e6400e0765348953a22f5dcf49ebd791c03</cites><orcidid>0000-0001-8179-6685 ; 0000-0003-0975-2367 ; 0000-0002-3781-8231 ; 0000-0003-2248-3755 ; 0000-0002-4805-0926 ; 0000-0002-9398-2327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9127874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9127874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Zhen, Jiajie</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Zhan, Geng</creatorcontrib><creatorcontrib>He, Zhaocheng</creatorcontrib><creatorcontrib>Du, Bowen</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><title>Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM &lt;xref ref-type="bibr" rid="ref1"&gt;[1] ) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at https://github.com/liulingbo918/ATFM .</description><subject>Artificial intelligence</subject><subject>attentional recurrent neural network</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Intelligent transportation systems</subject><subject>mobility data</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Representations</subject><subject>Spatial dependencies</subject><subject>spatial-temporal modeling</subject><subject>Task analysis</subject><subject>Traffic flow</subject><subject>Traffic flow prediction</subject><subject>Urban areas</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2Y9s9ijVaiGg2HhetsmspKRJ3ESk_96EFk8zvDzvDDyM3SIsEME85Ot8s-DAYSEAuMb0jM1QqTQGwOR82rmMDSi4ZFd9vxtTqRBnLHs6NG5fFdGmc0Pl6jinfdcGV0cf1AXqqRnGvG2ijFxoquYr8m2I8uC8H0uruv2N3gOVVTFB1-zCu7qnm9Ocs8_Vc758jbO3l_XyMYsLkcohlqVzYkvGpSASXaDSyiQoUSivRUKJBCDQiRIyNUo4zr0qCy8NbUttsAAxZ_fHu11ov3-oH-yu_QnN-NJyZXjCAZGPFB6pIrR9H8jbLlR7Fw4WwU7S7CTNTtLsSdrYuTt2KiL65w1ynWop_gDGvGcv</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Liu, Lingbo</creator><creator>Zhen, Jiajie</creator><creator>Li, Guanbin</creator><creator>Zhan, Geng</creator><creator>He, Zhaocheng</creator><creator>Du, Bowen</creator><creator>Lin, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0003-0975-2367</orcidid><orcidid>https://orcid.org/0000-0002-3781-8231</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0002-9398-2327</orcidid></search><sort><creationdate>20211101</creationdate><title>Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction</title><author>Liu, Lingbo ; Zhen, Jiajie ; Li, Guanbin ; Zhan, Geng ; He, Zhaocheng ; Du, Bowen ; Lin, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-4daa3be9a80367c15759614135f736e6400e0765348953a22f5dcf49ebd791c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>attentional recurrent neural network</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Intelligent transportation systems</topic><topic>mobility data</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Representations</topic><topic>Spatial dependencies</topic><topic>spatial-temporal modeling</topic><topic>Task analysis</topic><topic>Traffic flow</topic><topic>Traffic flow prediction</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Zhen, Jiajie</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Zhan, Geng</creatorcontrib><creatorcontrib>He, Zhaocheng</creatorcontrib><creatorcontrib>Du, Bowen</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lingbo</au><au>Zhen, Jiajie</au><au>Li, Guanbin</au><au>Zhan, Geng</au><au>He, Zhaocheng</au><au>Du, Bowen</au><au>Lin, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>22</volume><issue>11</issue><spage>7169</spage><epage>7183</epage><pages>7169-7183</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM &lt;xref ref-type="bibr" rid="ref1"&gt;[1] ) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at https://github.com/liulingbo918/ATFM .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3002718</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0003-0975-2367</orcidid><orcidid>https://orcid.org/0000-0002-3781-8231</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0002-9398-2327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2021-11, Vol.22 (11), p.7169-7183
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2020_3002718
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
attentional recurrent neural network
Deep learning
Feature extraction
Intelligent transportation systems
mobility data
Neural networks
Predictive models
Representations
Spatial dependencies
spatial-temporal modeling
Task analysis
Traffic flow
Traffic flow prediction
Urban areas
title Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Spatial-Temporal%20Representation%20Learning%20for%20Traffic%20Flow%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Liu,%20Lingbo&rft.date=2021-11-01&rft.volume=22&rft.issue=11&rft.spage=7169&rft.epage=7183&rft.pages=7169-7183&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3002718&rft_dat=%3Cproquest_RIE%3E2592620112%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592620112&rft_id=info:pmid/&rft_ieee_id=9127874&rfr_iscdi=true