Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction
As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2021-11, Vol.22 (11), p.7169-7183 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7183 |
---|---|
container_issue | 11 |
container_start_page | 7169 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 22 |
creator | Liu, Lingbo Zhen, Jiajie Li, Guanbin Zhan, Geng He, Zhaocheng Du, Bowen Lin, Liang |
description | As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM [1] ) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at https://github.com/liulingbo918/ATFM . |
doi_str_mv | 10.1109/TITS.2020.3002718 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2020_3002718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9127874</ieee_id><sourcerecordid>2592620112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-4daa3be9a80367c15759614135f736e6400e0765348953a22f5dcf49ebd791c03</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2Y9s9ijVaiGg2HhetsmspKRJ3ESk_96EFk8zvDzvDDyM3SIsEME85Ot8s-DAYSEAuMb0jM1QqTQGwOR82rmMDSi4ZFd9vxtTqRBnLHs6NG5fFdGmc0Pl6jinfdcGV0cf1AXqqRnGvG2ijFxoquYr8m2I8uC8H0uruv2N3gOVVTFB1-zCu7qnm9Ocs8_Vc758jbO3l_XyMYsLkcohlqVzYkvGpSASXaDSyiQoUSivRUKJBCDQiRIyNUo4zr0qCy8NbUttsAAxZ_fHu11ov3-oH-yu_QnN-NJyZXjCAZGPFB6pIrR9H8jbLlR7Fw4WwU7S7CTNTtLsSdrYuTt2KiL65w1ynWop_gDGvGcv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592620112</pqid></control><display><type>article</type><title>Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Lingbo ; Zhen, Jiajie ; Li, Guanbin ; Zhan, Geng ; He, Zhaocheng ; Du, Bowen ; Lin, Liang</creator><creatorcontrib>Liu, Lingbo ; Zhen, Jiajie ; Li, Guanbin ; Zhan, Geng ; He, Zhaocheng ; Du, Bowen ; Lin, Liang</creatorcontrib><description>As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM <xref ref-type="bibr" rid="ref1">[1] ) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at https://github.com/liulingbo918/ATFM .</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3002718</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; attentional recurrent neural network ; Deep learning ; Feature extraction ; Intelligent transportation systems ; mobility data ; Neural networks ; Predictive models ; Representations ; Spatial dependencies ; spatial-temporal modeling ; Task analysis ; Traffic flow ; Traffic flow prediction ; Urban areas</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-11, Vol.22 (11), p.7169-7183</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-4daa3be9a80367c15759614135f736e6400e0765348953a22f5dcf49ebd791c03</citedby><cites>FETCH-LOGICAL-c384t-4daa3be9a80367c15759614135f736e6400e0765348953a22f5dcf49ebd791c03</cites><orcidid>0000-0001-8179-6685 ; 0000-0003-0975-2367 ; 0000-0002-3781-8231 ; 0000-0003-2248-3755 ; 0000-0002-4805-0926 ; 0000-0002-9398-2327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9127874$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9127874$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Zhen, Jiajie</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Zhan, Geng</creatorcontrib><creatorcontrib>He, Zhaocheng</creatorcontrib><creatorcontrib>Du, Bowen</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><title>Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM <xref ref-type="bibr" rid="ref1">[1] ) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at https://github.com/liulingbo918/ATFM .</description><subject>Artificial intelligence</subject><subject>attentional recurrent neural network</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Intelligent transportation systems</subject><subject>mobility data</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Representations</subject><subject>Spatial dependencies</subject><subject>spatial-temporal modeling</subject><subject>Task analysis</subject><subject>Traffic flow</subject><subject>Traffic flow prediction</subject><subject>Urban areas</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6d2Y9s9ijVaiGg2HhetsmspKRJ3ESk_96EFk8zvDzvDDyM3SIsEME85Ot8s-DAYSEAuMb0jM1QqTQGwOR82rmMDSi4ZFd9vxtTqRBnLHs6NG5fFdGmc0Pl6jinfdcGV0cf1AXqqRnGvG2ijFxoquYr8m2I8uC8H0uruv2N3gOVVTFB1-zCu7qnm9Ocs8_Vc758jbO3l_XyMYsLkcohlqVzYkvGpSASXaDSyiQoUSivRUKJBCDQiRIyNUo4zr0qCy8NbUttsAAxZ_fHu11ov3-oH-yu_QnN-NJyZXjCAZGPFB6pIrR9H8jbLlR7Fw4WwU7S7CTNTtLsSdrYuTt2KiL65w1ynWop_gDGvGcv</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Liu, Lingbo</creator><creator>Zhen, Jiajie</creator><creator>Li, Guanbin</creator><creator>Zhan, Geng</creator><creator>He, Zhaocheng</creator><creator>Du, Bowen</creator><creator>Lin, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0003-0975-2367</orcidid><orcidid>https://orcid.org/0000-0002-3781-8231</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0002-9398-2327</orcidid></search><sort><creationdate>20211101</creationdate><title>Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction</title><author>Liu, Lingbo ; Zhen, Jiajie ; Li, Guanbin ; Zhan, Geng ; He, Zhaocheng ; Du, Bowen ; Lin, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-4daa3be9a80367c15759614135f736e6400e0765348953a22f5dcf49ebd791c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>attentional recurrent neural network</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Intelligent transportation systems</topic><topic>mobility data</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Representations</topic><topic>Spatial dependencies</topic><topic>spatial-temporal modeling</topic><topic>Task analysis</topic><topic>Traffic flow</topic><topic>Traffic flow prediction</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lingbo</creatorcontrib><creatorcontrib>Zhen, Jiajie</creatorcontrib><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Zhan, Geng</creatorcontrib><creatorcontrib>He, Zhaocheng</creatorcontrib><creatorcontrib>Du, Bowen</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lingbo</au><au>Zhen, Jiajie</au><au>Li, Guanbin</au><au>Zhan, Geng</au><au>He, Zhaocheng</au><au>Du, Bowen</au><au>Lin, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>22</volume><issue>11</issue><spage>7169</spage><epage>7183</epage><pages>7169-7183</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM <xref ref-type="bibr" rid="ref1">[1] ) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at https://github.com/liulingbo918/ATFM .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3002718</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8179-6685</orcidid><orcidid>https://orcid.org/0000-0003-0975-2367</orcidid><orcidid>https://orcid.org/0000-0002-3781-8231</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0002-9398-2327</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2021-11, Vol.22 (11), p.7169-7183 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2020_3002718 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence attentional recurrent neural network Deep learning Feature extraction Intelligent transportation systems mobility data Neural networks Predictive models Representations Spatial dependencies spatial-temporal modeling Task analysis Traffic flow Traffic flow prediction Urban areas |
title | Dynamic Spatial-Temporal Representation Learning for Traffic Flow Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Spatial-Temporal%20Representation%20Learning%20for%20Traffic%20Flow%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Liu,%20Lingbo&rft.date=2021-11-01&rft.volume=22&rft.issue=11&rft.spage=7169&rft.epage=7183&rft.pages=7169-7183&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3002718&rft_dat=%3Cproquest_RIE%3E2592620112%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592620112&rft_id=info:pmid/&rft_ieee_id=9127874&rfr_iscdi=true |