Fast Road Detection by CNN-Based Camera-Lidar Fusion and Spherical Coordinate Transformation

We propose a new camera-lidar fusion method for road detection where the spherical coordinate transformation is introduced to decrease the gap between the point cloud of 3D lidar data. The camera's color data and the 3D lidar's height data are transformed into the same spherical coordinate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-09, Vol.22 (9), p.5802-5810
Hauptverfasser: Lee, Jae-Seol, Park, Tae-Hyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5810
container_issue 9
container_start_page 5802
container_title IEEE transactions on intelligent transportation systems
container_volume 22
creator Lee, Jae-Seol
Park, Tae-Hyoung
description We propose a new camera-lidar fusion method for road detection where the spherical coordinate transformation is introduced to decrease the gap between the point cloud of 3D lidar data. The camera's color data and the 3D lidar's height data are transformed into the same spherical coordinate, and then input to the convolution neural network for segmentation. Faster segmentation is possible due to the reduced size of input data. To increase the detection accuracy, this modified SegNet expands the receptive field of the network. Using the KITTI dataset, we present the experimental results to show the usefulness of the proposed method.
doi_str_mv 10.1109/TITS.2020.2988302
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2020_2988302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9084150</ieee_id><sourcerecordid>2568069960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c38493b63ac9d096564ddf55f7807405fda90c92e1922c5e342472f60d7f47283</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWD9-gHgJeN46ySZpctTVaqFUsOtNCGk-cEu7qcn20H_vLi2e5mV43hl4ELojMCYE1GM9q5djChTGVElZAj1DI8K5LACIOB8yZYUCDpfoKud1v2WckBH6nprc4c9oHH7xnbddE1u8OuBqsSieTfYOV2brkynmjTMJT_d5AEzr8HL341NjzQZXMSbXtKbzuE6mzSGmrRkO3aCLYDbZ357mNfqavtbVezH_eJtVT_PCUlV2hS0lU-VKlMYqB0pwwZwLnIeJhAkDHpxRYBX1RFFquS8ZZRMaBLhJ6IMsr9HD8e4uxd-9z51ex31q-5eaciFBKCWgp8iRsinmnHzQu9RsTTpoAnqQqAeJepCoTxL7zv2x03jv_3kFkhEO5R9i2WwW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568069960</pqid></control><display><type>article</type><title>Fast Road Detection by CNN-Based Camera-Lidar Fusion and Spherical Coordinate Transformation</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Jae-Seol ; Park, Tae-Hyoung</creator><creatorcontrib>Lee, Jae-Seol ; Park, Tae-Hyoung</creatorcontrib><description>We propose a new camera-lidar fusion method for road detection where the spherical coordinate transformation is introduced to decrease the gap between the point cloud of 3D lidar data. The camera's color data and the 3D lidar's height data are transformed into the same spherical coordinate, and then input to the convolution neural network for segmentation. Faster segmentation is possible due to the reduced size of input data. To increase the detection accuracy, this modified SegNet expands the receptive field of the network. Using the KITTI dataset, we present the experimental results to show the usefulness of the proposed method.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.2988302</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Autonomous vehicles ; Cameras ; convolution neural network ; Convolutional neural networks ; Coordinate transformations ; Image segmentation ; Laser radar ; Lidar ; lidar and camera fusion ; Road detection ; Segmentation ; Sensor fusion ; spherical coordinate transformation ; Spherical coordinates ; Three dimensional models</subject><ispartof>IEEE transactions on intelligent transportation systems, 2021-09, Vol.22 (9), p.5802-5810</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c38493b63ac9d096564ddf55f7807405fda90c92e1922c5e342472f60d7f47283</citedby><cites>FETCH-LOGICAL-c293t-c38493b63ac9d096564ddf55f7807405fda90c92e1922c5e342472f60d7f47283</cites><orcidid>0000-0002-3695-344X ; 0000-0002-8615-171X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9084150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9084150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Jae-Seol</creatorcontrib><creatorcontrib>Park, Tae-Hyoung</creatorcontrib><title>Fast Road Detection by CNN-Based Camera-Lidar Fusion and Spherical Coordinate Transformation</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>We propose a new camera-lidar fusion method for road detection where the spherical coordinate transformation is introduced to decrease the gap between the point cloud of 3D lidar data. The camera's color data and the 3D lidar's height data are transformed into the same spherical coordinate, and then input to the convolution neural network for segmentation. Faster segmentation is possible due to the reduced size of input data. To increase the detection accuracy, this modified SegNet expands the receptive field of the network. Using the KITTI dataset, we present the experimental results to show the usefulness of the proposed method.</description><subject>Artificial neural networks</subject><subject>Autonomous vehicles</subject><subject>Cameras</subject><subject>convolution neural network</subject><subject>Convolutional neural networks</subject><subject>Coordinate transformations</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>lidar and camera fusion</subject><subject>Road detection</subject><subject>Segmentation</subject><subject>Sensor fusion</subject><subject>spherical coordinate transformation</subject><subject>Spherical coordinates</subject><subject>Three dimensional models</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWD9-gHgJeN46ySZpctTVaqFUsOtNCGk-cEu7qcn20H_vLi2e5mV43hl4ELojMCYE1GM9q5djChTGVElZAj1DI8K5LACIOB8yZYUCDpfoKud1v2WckBH6nprc4c9oHH7xnbddE1u8OuBqsSieTfYOV2brkynmjTMJT_d5AEzr8HL341NjzQZXMSbXtKbzuE6mzSGmrRkO3aCLYDbZ357mNfqavtbVezH_eJtVT_PCUlV2hS0lU-VKlMYqB0pwwZwLnIeJhAkDHpxRYBX1RFFquS8ZZRMaBLhJ6IMsr9HD8e4uxd-9z51ex31q-5eaciFBKCWgp8iRsinmnHzQu9RsTTpoAnqQqAeJepCoTxL7zv2x03jv_3kFkhEO5R9i2WwW</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lee, Jae-Seol</creator><creator>Park, Tae-Hyoung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3695-344X</orcidid><orcidid>https://orcid.org/0000-0002-8615-171X</orcidid></search><sort><creationdate>20210901</creationdate><title>Fast Road Detection by CNN-Based Camera-Lidar Fusion and Spherical Coordinate Transformation</title><author>Lee, Jae-Seol ; Park, Tae-Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c38493b63ac9d096564ddf55f7807405fda90c92e1922c5e342472f60d7f47283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Autonomous vehicles</topic><topic>Cameras</topic><topic>convolution neural network</topic><topic>Convolutional neural networks</topic><topic>Coordinate transformations</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>lidar and camera fusion</topic><topic>Road detection</topic><topic>Segmentation</topic><topic>Sensor fusion</topic><topic>spherical coordinate transformation</topic><topic>Spherical coordinates</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jae-Seol</creatorcontrib><creatorcontrib>Park, Tae-Hyoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Jae-Seol</au><au>Park, Tae-Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Road Detection by CNN-Based Camera-Lidar Fusion and Spherical Coordinate Transformation</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>22</volume><issue>9</issue><spage>5802</spage><epage>5810</epage><pages>5802-5810</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>We propose a new camera-lidar fusion method for road detection where the spherical coordinate transformation is introduced to decrease the gap between the point cloud of 3D lidar data. The camera's color data and the 3D lidar's height data are transformed into the same spherical coordinate, and then input to the convolution neural network for segmentation. Faster segmentation is possible due to the reduced size of input data. To increase the detection accuracy, this modified SegNet expands the receptive field of the network. Using the KITTI dataset, we present the experimental results to show the usefulness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.2988302</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3695-344X</orcidid><orcidid>https://orcid.org/0000-0002-8615-171X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2021-09, Vol.22 (9), p.5802-5810
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2020_2988302
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Autonomous vehicles
Cameras
convolution neural network
Convolutional neural networks
Coordinate transformations
Image segmentation
Laser radar
Lidar
lidar and camera fusion
Road detection
Segmentation
Sensor fusion
spherical coordinate transformation
Spherical coordinates
Three dimensional models
title Fast Road Detection by CNN-Based Camera-Lidar Fusion and Spherical Coordinate Transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Road%20Detection%20by%20CNN-Based%20Camera-Lidar%20Fusion%20and%20Spherical%20Coordinate%20Transformation&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Lee,%20Jae-Seol&rft.date=2021-09-01&rft.volume=22&rft.issue=9&rft.spage=5802&rft.epage=5810&rft.pages=5802-5810&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.2988302&rft_dat=%3Cproquest_RIE%3E2568069960%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568069960&rft_id=info:pmid/&rft_ieee_id=9084150&rfr_iscdi=true