On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets

This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2020-11, Vol.21 (11), p.4912-4918
Hauptverfasser: Asensio Lopez, Alberto, Munoz Dekamp, Jesus, Duque de Quevedo, Alvaro, Ibanez Urzaiz, Fernando, Gismero Menoyo, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4918
container_issue 11
container_start_page 4912
container_title IEEE transactions on intelligent transportation systems
container_volume 21
creator Asensio Lopez, Alberto
Munoz Dekamp, Jesus
Duque de Quevedo, Alvaro
Ibanez Urzaiz, Fernando
Gismero Menoyo, Javier
description This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous results. For that purpose, the presented system is required to measure azimuth and Doppler of targets, for which it opts for a 2-channel Digital Array Receiver scheme working with a frequency-modulated continuous wave. This involves more complex hardware and signal processing software, comparing to the common mono-channel non coherent systems, nevertheless latest devices (radio frequency subsystems, field-programmable gate arrays, digitizers, etc) make it simple and affordable. The proposed system, with an easy-and-fast side-looking installation, exploits several advantages of its 2-channel synchronous architecture (e.g. clutter cancellation, Doppler history availability, etc) to achieve a better estimation of two key measurements: traffic flow (instantaneous and average) and vehicles speed.
doi_str_mv 10.1109/TITS.2019.2950522
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2019_2950522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8894006</ieee_id><sourcerecordid>2458750689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a5913076b07b9ea9e38a9811f4899c9058cc27a8c98b1833acec3c8bda0f3ce43</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-AONNE6-H_VhHe0kQkYTIBeO66coZjIxttuUCf71dZrw6b07e93w8CD1TMqGUqLd8lW8njFA1YUoQwdgNGlEhZEIIzW57zdJEEUHu0YP3p9hNBaUjZDYNDkfAOw-4LfGyrpqQvLddV4NLZj_V-RKOeN46B7UJVdvgsnV42wHs8cKH6jw0Y_ILjCuuODfNAZpQmTpKd4DgH9FdaWoPT391jHYfi3z-maw3y9V8tk4sUzwkRijKyTQryLRQYBRwaZSktEylUjZeLq1lUyOtkgWVnBsLlltZ7A0puYWUj9HrMLdz7fcFfNCn9uKauFKzVMipIJlU0UUHl3Wt9w5K3bn4hbtqSnRPUvckdU9S_5GMmZchUwHAv19KlRKS8V8DRG-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458750689</pqid></control><display><type>article</type><title>On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets</title><source>IEEE Electronic Library (IEL)</source><creator>Asensio Lopez, Alberto ; Munoz Dekamp, Jesus ; Duque de Quevedo, Alvaro ; Ibanez Urzaiz, Fernando ; Gismero Menoyo, Javier</creator><creatorcontrib>Asensio Lopez, Alberto ; Munoz Dekamp, Jesus ; Duque de Quevedo, Alvaro ; Ibanez Urzaiz, Fernando ; Gismero Menoyo, Javier</creatorcontrib><description>This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous results. For that purpose, the presented system is required to measure azimuth and Doppler of targets, for which it opts for a 2-channel Digital Array Receiver scheme working with a frequency-modulated continuous wave. This involves more complex hardware and signal processing software, comparing to the common mono-channel non coherent systems, nevertheless latest devices (radio frequency subsystems, field-programmable gate arrays, digitizers, etc) make it simple and affordable. The proposed system, with an easy-and-fast side-looking installation, exploits several advantages of its 2-channel synchronous architecture (e.g. clutter cancellation, Doppler history availability, etc) to achieve a better estimation of two key measurements: traffic flow (instantaneous and average) and vehicles speed.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2950522</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Azimuth ; Clutter ; Coherent radar ; Continuous radiation ; digital array receiver (DAR) ; Doppler effect ; Doppler radar ; Field programmable gate arrays ; frequency-modulated continuous wave (FMCW) ; Glint ; History ; intelligent transportation system (ITS) ; Intelligent transportation systems ; microwave radar sensor ; Radar antennas ; Radar equipment ; Radar measurements ; Signal processing ; speed measurement ; Subsystems ; Traffic flow ; Traffic speed ; vehicle classification ; vehicle detection</subject><ispartof>IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4912-4918</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a5913076b07b9ea9e38a9811f4899c9058cc27a8c98b1833acec3c8bda0f3ce43</citedby><cites>FETCH-LOGICAL-c293t-a5913076b07b9ea9e38a9811f4899c9058cc27a8c98b1833acec3c8bda0f3ce43</cites><orcidid>0000-0002-6324-3582 ; 0000-0003-3323-6960 ; 0000-0001-9828-220X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8894006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8894006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asensio Lopez, Alberto</creatorcontrib><creatorcontrib>Munoz Dekamp, Jesus</creatorcontrib><creatorcontrib>Duque de Quevedo, Alvaro</creatorcontrib><creatorcontrib>Ibanez Urzaiz, Fernando</creatorcontrib><creatorcontrib>Gismero Menoyo, Javier</creatorcontrib><title>On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous results. For that purpose, the presented system is required to measure azimuth and Doppler of targets, for which it opts for a 2-channel Digital Array Receiver scheme working with a frequency-modulated continuous wave. This involves more complex hardware and signal processing software, comparing to the common mono-channel non coherent systems, nevertheless latest devices (radio frequency subsystems, field-programmable gate arrays, digitizers, etc) make it simple and affordable. The proposed system, with an easy-and-fast side-looking installation, exploits several advantages of its 2-channel synchronous architecture (e.g. clutter cancellation, Doppler history availability, etc) to achieve a better estimation of two key measurements: traffic flow (instantaneous and average) and vehicles speed.</description><subject>Azimuth</subject><subject>Clutter</subject><subject>Coherent radar</subject><subject>Continuous radiation</subject><subject>digital array receiver (DAR)</subject><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>Field programmable gate arrays</subject><subject>frequency-modulated continuous wave (FMCW)</subject><subject>Glint</subject><subject>History</subject><subject>intelligent transportation system (ITS)</subject><subject>Intelligent transportation systems</subject><subject>microwave radar sensor</subject><subject>Radar antennas</subject><subject>Radar equipment</subject><subject>Radar measurements</subject><subject>Signal processing</subject><subject>speed measurement</subject><subject>Subsystems</subject><subject>Traffic flow</subject><subject>Traffic speed</subject><subject>vehicle classification</subject><subject>vehicle detection</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiYj-AONNE6-H_VhHe0kQkYTIBeO66coZjIxttuUCf71dZrw6b07e93w8CD1TMqGUqLd8lW8njFA1YUoQwdgNGlEhZEIIzW57zdJEEUHu0YP3p9hNBaUjZDYNDkfAOw-4LfGyrpqQvLddV4NLZj_V-RKOeN46B7UJVdvgsnV42wHs8cKH6jw0Y_ILjCuuODfNAZpQmTpKd4DgH9FdaWoPT391jHYfi3z-maw3y9V8tk4sUzwkRijKyTQryLRQYBRwaZSktEylUjZeLq1lUyOtkgWVnBsLlltZ7A0puYWUj9HrMLdz7fcFfNCn9uKauFKzVMipIJlU0UUHl3Wt9w5K3bn4hbtqSnRPUvckdU9S_5GMmZchUwHAv19KlRKS8V8DRG-C</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Asensio Lopez, Alberto</creator><creator>Munoz Dekamp, Jesus</creator><creator>Duque de Quevedo, Alvaro</creator><creator>Ibanez Urzaiz, Fernando</creator><creator>Gismero Menoyo, Javier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6324-3582</orcidid><orcidid>https://orcid.org/0000-0003-3323-6960</orcidid><orcidid>https://orcid.org/0000-0001-9828-220X</orcidid></search><sort><creationdate>20201101</creationdate><title>On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets</title><author>Asensio Lopez, Alberto ; Munoz Dekamp, Jesus ; Duque de Quevedo, Alvaro ; Ibanez Urzaiz, Fernando ; Gismero Menoyo, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a5913076b07b9ea9e38a9811f4899c9058cc27a8c98b1833acec3c8bda0f3ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Azimuth</topic><topic>Clutter</topic><topic>Coherent radar</topic><topic>Continuous radiation</topic><topic>digital array receiver (DAR)</topic><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>Field programmable gate arrays</topic><topic>frequency-modulated continuous wave (FMCW)</topic><topic>Glint</topic><topic>History</topic><topic>intelligent transportation system (ITS)</topic><topic>Intelligent transportation systems</topic><topic>microwave radar sensor</topic><topic>Radar antennas</topic><topic>Radar equipment</topic><topic>Radar measurements</topic><topic>Signal processing</topic><topic>speed measurement</topic><topic>Subsystems</topic><topic>Traffic flow</topic><topic>Traffic speed</topic><topic>vehicle classification</topic><topic>vehicle detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asensio Lopez, Alberto</creatorcontrib><creatorcontrib>Munoz Dekamp, Jesus</creatorcontrib><creatorcontrib>Duque de Quevedo, Alvaro</creatorcontrib><creatorcontrib>Ibanez Urzaiz, Fernando</creatorcontrib><creatorcontrib>Gismero Menoyo, Javier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asensio Lopez, Alberto</au><au>Munoz Dekamp, Jesus</au><au>Duque de Quevedo, Alvaro</au><au>Ibanez Urzaiz, Fernando</au><au>Gismero Menoyo, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>21</volume><issue>11</issue><spage>4912</spage><epage>4918</epage><pages>4912-4918</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous results. For that purpose, the presented system is required to measure azimuth and Doppler of targets, for which it opts for a 2-channel Digital Array Receiver scheme working with a frequency-modulated continuous wave. This involves more complex hardware and signal processing software, comparing to the common mono-channel non coherent systems, nevertheless latest devices (radio frequency subsystems, field-programmable gate arrays, digitizers, etc) make it simple and affordable. The proposed system, with an easy-and-fast side-looking installation, exploits several advantages of its 2-channel synchronous architecture (e.g. clutter cancellation, Doppler history availability, etc) to achieve a better estimation of two key measurements: traffic flow (instantaneous and average) and vehicles speed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2950522</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6324-3582</orcidid><orcidid>https://orcid.org/0000-0003-3323-6960</orcidid><orcidid>https://orcid.org/0000-0001-9828-220X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4912-4918
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2019_2950522
source IEEE Electronic Library (IEL)
subjects Azimuth
Clutter
Coherent radar
Continuous radiation
digital array receiver (DAR)
Doppler effect
Doppler radar
Field programmable gate arrays
frequency-modulated continuous wave (FMCW)
Glint
History
intelligent transportation system (ITS)
Intelligent transportation systems
microwave radar sensor
Radar antennas
Radar equipment
Radar measurements
Signal processing
speed measurement
Subsystems
Traffic flow
Traffic speed
vehicle classification
vehicle detection
title On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Use%20of%20Glint-Doppler-Azimuth%20Correlation%20for%20Speed%20Estimation%20of%20Nearby%20Tangential%20Targets&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Asensio%20Lopez,%20Alberto&rft.date=2020-11-01&rft.volume=21&rft.issue=11&rft.spage=4912&rft.epage=4918&rft.pages=4912-4918&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2950522&rft_dat=%3Cproquest_RIE%3E2458750689%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458750689&rft_id=info:pmid/&rft_ieee_id=8894006&rfr_iscdi=true