On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets
This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous result...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2020-11, Vol.21 (11), p.4912-4918 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4918 |
---|---|
container_issue | 11 |
container_start_page | 4912 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 21 |
creator | Asensio Lopez, Alberto Munoz Dekamp, Jesus Duque de Quevedo, Alvaro Ibanez Urzaiz, Fernando Gismero Menoyo, Javier |
description | This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous results. For that purpose, the presented system is required to measure azimuth and Doppler of targets, for which it opts for a 2-channel Digital Array Receiver scheme working with a frequency-modulated continuous wave. This involves more complex hardware and signal processing software, comparing to the common mono-channel non coherent systems, nevertheless latest devices (radio frequency subsystems, field-programmable gate arrays, digitizers, etc) make it simple and affordable. The proposed system, with an easy-and-fast side-looking installation, exploits several advantages of its 2-channel synchronous architecture (e.g. clutter cancellation, Doppler history availability, etc) to achieve a better estimation of two key measurements: traffic flow (instantaneous and average) and vehicles speed. |
doi_str_mv | 10.1109/TITS.2019.2950522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2019_2950522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8894006</ieee_id><sourcerecordid>2458750689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a5913076b07b9ea9e38a9811f4899c9058cc27a8c98b1833acec3c8bda0f3ce43</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-AONNE6-H_VhHe0kQkYTIBeO66coZjIxttuUCf71dZrw6b07e93w8CD1TMqGUqLd8lW8njFA1YUoQwdgNGlEhZEIIzW57zdJEEUHu0YP3p9hNBaUjZDYNDkfAOw-4LfGyrpqQvLddV4NLZj_V-RKOeN46B7UJVdvgsnV42wHs8cKH6jw0Y_ILjCuuODfNAZpQmTpKd4DgH9FdaWoPT391jHYfi3z-maw3y9V8tk4sUzwkRijKyTQryLRQYBRwaZSktEylUjZeLq1lUyOtkgWVnBsLlltZ7A0puYWUj9HrMLdz7fcFfNCn9uKauFKzVMipIJlU0UUHl3Wt9w5K3bn4hbtqSnRPUvckdU9S_5GMmZchUwHAv19KlRKS8V8DRG-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458750689</pqid></control><display><type>article</type><title>On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets</title><source>IEEE Electronic Library (IEL)</source><creator>Asensio Lopez, Alberto ; Munoz Dekamp, Jesus ; Duque de Quevedo, Alvaro ; Ibanez Urzaiz, Fernando ; Gismero Menoyo, Javier</creator><creatorcontrib>Asensio Lopez, Alberto ; Munoz Dekamp, Jesus ; Duque de Quevedo, Alvaro ; Ibanez Urzaiz, Fernando ; Gismero Menoyo, Javier</creatorcontrib><description>This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous results. For that purpose, the presented system is required to measure azimuth and Doppler of targets, for which it opts for a 2-channel Digital Array Receiver scheme working with a frequency-modulated continuous wave. This involves more complex hardware and signal processing software, comparing to the common mono-channel non coherent systems, nevertheless latest devices (radio frequency subsystems, field-programmable gate arrays, digitizers, etc) make it simple and affordable. The proposed system, with an easy-and-fast side-looking installation, exploits several advantages of its 2-channel synchronous architecture (e.g. clutter cancellation, Doppler history availability, etc) to achieve a better estimation of two key measurements: traffic flow (instantaneous and average) and vehicles speed.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2950522</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Azimuth ; Clutter ; Coherent radar ; Continuous radiation ; digital array receiver (DAR) ; Doppler effect ; Doppler radar ; Field programmable gate arrays ; frequency-modulated continuous wave (FMCW) ; Glint ; History ; intelligent transportation system (ITS) ; Intelligent transportation systems ; microwave radar sensor ; Radar antennas ; Radar equipment ; Radar measurements ; Signal processing ; speed measurement ; Subsystems ; Traffic flow ; Traffic speed ; vehicle classification ; vehicle detection</subject><ispartof>IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4912-4918</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a5913076b07b9ea9e38a9811f4899c9058cc27a8c98b1833acec3c8bda0f3ce43</citedby><cites>FETCH-LOGICAL-c293t-a5913076b07b9ea9e38a9811f4899c9058cc27a8c98b1833acec3c8bda0f3ce43</cites><orcidid>0000-0002-6324-3582 ; 0000-0003-3323-6960 ; 0000-0001-9828-220X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8894006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8894006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Asensio Lopez, Alberto</creatorcontrib><creatorcontrib>Munoz Dekamp, Jesus</creatorcontrib><creatorcontrib>Duque de Quevedo, Alvaro</creatorcontrib><creatorcontrib>Ibanez Urzaiz, Fernando</creatorcontrib><creatorcontrib>Gismero Menoyo, Javier</creatorcontrib><title>On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous results. For that purpose, the presented system is required to measure azimuth and Doppler of targets, for which it opts for a 2-channel Digital Array Receiver scheme working with a frequency-modulated continuous wave. This involves more complex hardware and signal processing software, comparing to the common mono-channel non coherent systems, nevertheless latest devices (radio frequency subsystems, field-programmable gate arrays, digitizers, etc) make it simple and affordable. The proposed system, with an easy-and-fast side-looking installation, exploits several advantages of its 2-channel synchronous architecture (e.g. clutter cancellation, Doppler history availability, etc) to achieve a better estimation of two key measurements: traffic flow (instantaneous and average) and vehicles speed.</description><subject>Azimuth</subject><subject>Clutter</subject><subject>Coherent radar</subject><subject>Continuous radiation</subject><subject>digital array receiver (DAR)</subject><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>Field programmable gate arrays</subject><subject>frequency-modulated continuous wave (FMCW)</subject><subject>Glint</subject><subject>History</subject><subject>intelligent transportation system (ITS)</subject><subject>Intelligent transportation systems</subject><subject>microwave radar sensor</subject><subject>Radar antennas</subject><subject>Radar equipment</subject><subject>Radar measurements</subject><subject>Signal processing</subject><subject>speed measurement</subject><subject>Subsystems</subject><subject>Traffic flow</subject><subject>Traffic speed</subject><subject>vehicle classification</subject><subject>vehicle detection</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiYj-AONNE6-H_VhHe0kQkYTIBeO66coZjIxttuUCf71dZrw6b07e93w8CD1TMqGUqLd8lW8njFA1YUoQwdgNGlEhZEIIzW57zdJEEUHu0YP3p9hNBaUjZDYNDkfAOw-4LfGyrpqQvLddV4NLZj_V-RKOeN46B7UJVdvgsnV42wHs8cKH6jw0Y_ILjCuuODfNAZpQmTpKd4DgH9FdaWoPT391jHYfi3z-maw3y9V8tk4sUzwkRijKyTQryLRQYBRwaZSktEylUjZeLq1lUyOtkgWVnBsLlltZ7A0puYWUj9HrMLdz7fcFfNCn9uKauFKzVMipIJlU0UUHl3Wt9w5K3bn4hbtqSnRPUvckdU9S_5GMmZchUwHAv19KlRKS8V8DRG-C</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Asensio Lopez, Alberto</creator><creator>Munoz Dekamp, Jesus</creator><creator>Duque de Quevedo, Alvaro</creator><creator>Ibanez Urzaiz, Fernando</creator><creator>Gismero Menoyo, Javier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6324-3582</orcidid><orcidid>https://orcid.org/0000-0003-3323-6960</orcidid><orcidid>https://orcid.org/0000-0001-9828-220X</orcidid></search><sort><creationdate>20201101</creationdate><title>On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets</title><author>Asensio Lopez, Alberto ; Munoz Dekamp, Jesus ; Duque de Quevedo, Alvaro ; Ibanez Urzaiz, Fernando ; Gismero Menoyo, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a5913076b07b9ea9e38a9811f4899c9058cc27a8c98b1833acec3c8bda0f3ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Azimuth</topic><topic>Clutter</topic><topic>Coherent radar</topic><topic>Continuous radiation</topic><topic>digital array receiver (DAR)</topic><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>Field programmable gate arrays</topic><topic>frequency-modulated continuous wave (FMCW)</topic><topic>Glint</topic><topic>History</topic><topic>intelligent transportation system (ITS)</topic><topic>Intelligent transportation systems</topic><topic>microwave radar sensor</topic><topic>Radar antennas</topic><topic>Radar equipment</topic><topic>Radar measurements</topic><topic>Signal processing</topic><topic>speed measurement</topic><topic>Subsystems</topic><topic>Traffic flow</topic><topic>Traffic speed</topic><topic>vehicle classification</topic><topic>vehicle detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asensio Lopez, Alberto</creatorcontrib><creatorcontrib>Munoz Dekamp, Jesus</creatorcontrib><creatorcontrib>Duque de Quevedo, Alvaro</creatorcontrib><creatorcontrib>Ibanez Urzaiz, Fernando</creatorcontrib><creatorcontrib>Gismero Menoyo, Javier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Asensio Lopez, Alberto</au><au>Munoz Dekamp, Jesus</au><au>Duque de Quevedo, Alvaro</au><au>Ibanez Urzaiz, Fernando</au><au>Gismero Menoyo, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>21</volume><issue>11</issue><spage>4912</spage><epage>4918</epage><pages>4912-4918</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This article introduces a new radar architecture, which implements a new signal processing scheme, with applications to the Intelligent Transportation Systems. The proposed solution exploits a well-known problem regarding low range radar systems, the Glint Effect, in order to improve previous results. For that purpose, the presented system is required to measure azimuth and Doppler of targets, for which it opts for a 2-channel Digital Array Receiver scheme working with a frequency-modulated continuous wave. This involves more complex hardware and signal processing software, comparing to the common mono-channel non coherent systems, nevertheless latest devices (radio frequency subsystems, field-programmable gate arrays, digitizers, etc) make it simple and affordable. The proposed system, with an easy-and-fast side-looking installation, exploits several advantages of its 2-channel synchronous architecture (e.g. clutter cancellation, Doppler history availability, etc) to achieve a better estimation of two key measurements: traffic flow (instantaneous and average) and vehicles speed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2950522</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6324-3582</orcidid><orcidid>https://orcid.org/0000-0003-3323-6960</orcidid><orcidid>https://orcid.org/0000-0001-9828-220X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2020-11, Vol.21 (11), p.4912-4918 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2019_2950522 |
source | IEEE Electronic Library (IEL) |
subjects | Azimuth Clutter Coherent radar Continuous radiation digital array receiver (DAR) Doppler effect Doppler radar Field programmable gate arrays frequency-modulated continuous wave (FMCW) Glint History intelligent transportation system (ITS) Intelligent transportation systems microwave radar sensor Radar antennas Radar equipment Radar measurements Signal processing speed measurement Subsystems Traffic flow Traffic speed vehicle classification vehicle detection |
title | On the Use of Glint-Doppler-Azimuth Correlation for Speed Estimation of Nearby Tangential Targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Use%20of%20Glint-Doppler-Azimuth%20Correlation%20for%20Speed%20Estimation%20of%20Nearby%20Tangential%20Targets&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Asensio%20Lopez,%20Alberto&rft.date=2020-11-01&rft.volume=21&rft.issue=11&rft.spage=4912&rft.epage=4918&rft.pages=4912-4918&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2950522&rft_dat=%3Cproquest_RIE%3E2458750689%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458750689&rft_id=info:pmid/&rft_ieee_id=8894006&rfr_iscdi=true |