Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction
Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vect...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2019-06, Vol.20 (6), p.2001-2013 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2013 |
---|---|
container_issue | 6 |
container_start_page | 2001 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 20 |
creator | Feng, Xinxin Ling, Xianyao Zheng, Haifeng Chen, Zhonghui Xu, Yiwen |
description | Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine (AMSVM) with spatial-temporal correlation, which is named as AMSVM-STC. First, we explore both the nonlinearity and randomness of the traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the AMSVM. Second, we optimize the parameters of AMSVM with the adaptive particle swarm optimization algorithm, and propose a novel method to make the hybrid kernel's weight adjust adaptively according to the change tendency of real-time traffic flow. Third, we incorporate the spatial-temporal correlation information with AMSVM to predict the short-term traffic flow. We evaluate our algorithm by doing thorough experiment on real data sets. The results demonstrate that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the proposed AMSVM-STC outperforms the existing methods. |
doi_str_mv | 10.1109/TITS.2018.2854913 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2018_2854913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8454853</ieee_id><sourcerecordid>2232760153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4684f8c7822f5e718841e3db10fb2b266345b7dd1f5e6541ca45c0d96e7c2fc13</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZkyZtejmG0-GGwqpehjRNWEa31LRT_PembHh1Duf9OPAgdAtkAkCKh3JRrieUgJhQwVkB6RkaAeciIQSy82GnLCkIJ5foquu28co4wAhV01q1vfs2eHVoepe8mLA3DV5_rPCn6zd43areqSYpza71QTV45kMwTTz6PbY-4PXGhz7KYYfLoKx1Gs8b_4PfgqmdHmzX6MKqpjM3pzlG7_PHcvacLF-fFrPpMtG0SPuEZYJZoXNBqeUmByEYmLSugNiKVjTLUsarvK4hqhlnoBXjmtRFZnJNrYZ0jO6PvW3wXwfT9XLrD2EfX0pKU5pnBHgaXXB06eC7Lhgr2-B2KvxKIHJAKQeUckApTyhj5u6YccaYf79gnInY-Adij29v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232760153</pqid></control><display><type>article</type><title>Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Xinxin ; Ling, Xianyao ; Zheng, Haifeng ; Chen, Zhonghui ; Xu, Yiwen</creator><creatorcontrib>Feng, Xinxin ; Ling, Xianyao ; Zheng, Haifeng ; Chen, Zhonghui ; Xu, Yiwen</creatorcontrib><description>Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine (AMSVM) with spatial-temporal correlation, which is named as AMSVM-STC. First, we explore both the nonlinearity and randomness of the traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the AMSVM. Second, we optimize the parameters of AMSVM with the adaptive particle swarm optimization algorithm, and propose a novel method to make the hybrid kernel's weight adjust adaptively according to the change tendency of real-time traffic flow. Third, we incorporate the spatial-temporal correlation information with AMSVM to predict the short-term traffic flow. We evaluate our algorithm by doing thorough experiment on real data sets. The results demonstrate that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the proposed AMSVM-STC outperforms the existing methods.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2018.2854913</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; adaptive multi-kernel support vector machine ; adaptive particle swarm optimization ; Algorithms ; Correlation ; Driving conditions ; Forecasting ; Kernel ; Kernels ; Particle swarm optimization ; Polynomials ; Prediction algorithms ; Predictive models ; Real-time systems ; Short term ; Short-term traffic flow prediction ; spatial-temporal correlation ; Support vector machines ; Traffic congestion ; Traffic flow</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-06, Vol.20 (6), p.2001-2013</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4684f8c7822f5e718841e3db10fb2b266345b7dd1f5e6541ca45c0d96e7c2fc13</citedby><cites>FETCH-LOGICAL-c293t-4684f8c7822f5e718841e3db10fb2b266345b7dd1f5e6541ca45c0d96e7c2fc13</cites><orcidid>0000-0003-4450-3489 ; 0000-0003-1166-2280 ; 0000-0002-2142-721X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8454853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8454853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Xinxin</creatorcontrib><creatorcontrib>Ling, Xianyao</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Chen, Zhonghui</creatorcontrib><creatorcontrib>Xu, Yiwen</creatorcontrib><title>Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine (AMSVM) with spatial-temporal correlation, which is named as AMSVM-STC. First, we explore both the nonlinearity and randomness of the traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the AMSVM. Second, we optimize the parameters of AMSVM with the adaptive particle swarm optimization algorithm, and propose a novel method to make the hybrid kernel's weight adjust adaptively according to the change tendency of real-time traffic flow. Third, we incorporate the spatial-temporal correlation information with AMSVM to predict the short-term traffic flow. We evaluate our algorithm by doing thorough experiment on real data sets. The results demonstrate that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the proposed AMSVM-STC outperforms the existing methods.</description><subject>Adaptive algorithms</subject><subject>adaptive multi-kernel support vector machine</subject><subject>adaptive particle swarm optimization</subject><subject>Algorithms</subject><subject>Correlation</subject><subject>Driving conditions</subject><subject>Forecasting</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Particle swarm optimization</subject><subject>Polynomials</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Real-time systems</subject><subject>Short term</subject><subject>Short-term traffic flow prediction</subject><subject>spatial-temporal correlation</subject><subject>Support vector machines</subject><subject>Traffic congestion</subject><subject>Traffic flow</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZkyZtejmG0-GGwqpehjRNWEa31LRT_PembHh1Duf9OPAgdAtkAkCKh3JRrieUgJhQwVkB6RkaAeciIQSy82GnLCkIJ5foquu28co4wAhV01q1vfs2eHVoepe8mLA3DV5_rPCn6zd43areqSYpza71QTV45kMwTTz6PbY-4PXGhz7KYYfLoKx1Gs8b_4PfgqmdHmzX6MKqpjM3pzlG7_PHcvacLF-fFrPpMtG0SPuEZYJZoXNBqeUmByEYmLSugNiKVjTLUsarvK4hqhlnoBXjmtRFZnJNrYZ0jO6PvW3wXwfT9XLrD2EfX0pKU5pnBHgaXXB06eC7Lhgr2-B2KvxKIHJAKQeUckApTyhj5u6YccaYf79gnInY-Adij29v</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Feng, Xinxin</creator><creator>Ling, Xianyao</creator><creator>Zheng, Haifeng</creator><creator>Chen, Zhonghui</creator><creator>Xu, Yiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4450-3489</orcidid><orcidid>https://orcid.org/0000-0003-1166-2280</orcidid><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid></search><sort><creationdate>20190601</creationdate><title>Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction</title><author>Feng, Xinxin ; Ling, Xianyao ; Zheng, Haifeng ; Chen, Zhonghui ; Xu, Yiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4684f8c7822f5e718841e3db10fb2b266345b7dd1f5e6541ca45c0d96e7c2fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>adaptive multi-kernel support vector machine</topic><topic>adaptive particle swarm optimization</topic><topic>Algorithms</topic><topic>Correlation</topic><topic>Driving conditions</topic><topic>Forecasting</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Particle swarm optimization</topic><topic>Polynomials</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Real-time systems</topic><topic>Short term</topic><topic>Short-term traffic flow prediction</topic><topic>spatial-temporal correlation</topic><topic>Support vector machines</topic><topic>Traffic congestion</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xinxin</creatorcontrib><creatorcontrib>Ling, Xianyao</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Chen, Zhonghui</creatorcontrib><creatorcontrib>Xu, Yiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Xinxin</au><au>Ling, Xianyao</au><au>Zheng, Haifeng</au><au>Chen, Zhonghui</au><au>Xu, Yiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>20</volume><issue>6</issue><spage>2001</spage><epage>2013</epage><pages>2001-2013</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine (AMSVM) with spatial-temporal correlation, which is named as AMSVM-STC. First, we explore both the nonlinearity and randomness of the traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the AMSVM. Second, we optimize the parameters of AMSVM with the adaptive particle swarm optimization algorithm, and propose a novel method to make the hybrid kernel's weight adjust adaptively according to the change tendency of real-time traffic flow. Third, we incorporate the spatial-temporal correlation information with AMSVM to predict the short-term traffic flow. We evaluate our algorithm by doing thorough experiment on real data sets. The results demonstrate that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the proposed AMSVM-STC outperforms the existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2018.2854913</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4450-3489</orcidid><orcidid>https://orcid.org/0000-0003-1166-2280</orcidid><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2019-06, Vol.20 (6), p.2001-2013 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2018_2854913 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms adaptive multi-kernel support vector machine adaptive particle swarm optimization Algorithms Correlation Driving conditions Forecasting Kernel Kernels Particle swarm optimization Polynomials Prediction algorithms Predictive models Real-time systems Short term Short-term traffic flow prediction spatial-temporal correlation Support vector machines Traffic congestion Traffic flow |
title | Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Multi-Kernel%20SVM%20With%20Spatial-Temporal%20Correlation%20for%20Short-Term%20Traffic%20Flow%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Feng,%20Xinxin&rft.date=2019-06-01&rft.volume=20&rft.issue=6&rft.spage=2001&rft.epage=2013&rft.pages=2001-2013&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2018.2854913&rft_dat=%3Cproquest_RIE%3E2232760153%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232760153&rft_id=info:pmid/&rft_ieee_id=8454853&rfr_iscdi=true |