Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction

Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2019-06, Vol.20 (6), p.2001-2013
Hauptverfasser: Feng, Xinxin, Ling, Xianyao, Zheng, Haifeng, Chen, Zhonghui, Xu, Yiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2013
container_issue 6
container_start_page 2001
container_title IEEE transactions on intelligent transportation systems
container_volume 20
creator Feng, Xinxin
Ling, Xianyao
Zheng, Haifeng
Chen, Zhonghui
Xu, Yiwen
description Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine (AMSVM) with spatial-temporal correlation, which is named as AMSVM-STC. First, we explore both the nonlinearity and randomness of the traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the AMSVM. Second, we optimize the parameters of AMSVM with the adaptive particle swarm optimization algorithm, and propose a novel method to make the hybrid kernel's weight adjust adaptively according to the change tendency of real-time traffic flow. Third, we incorporate the spatial-temporal correlation information with AMSVM to predict the short-term traffic flow. We evaluate our algorithm by doing thorough experiment on real data sets. The results demonstrate that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the proposed AMSVM-STC outperforms the existing methods.
doi_str_mv 10.1109/TITS.2018.2854913
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2018_2854913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8454853</ieee_id><sourcerecordid>2232760153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4684f8c7822f5e718841e3db10fb2b266345b7dd1f5e6541ca45c0d96e7c2fc13</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZkyZtejmG0-GGwqpehjRNWEa31LRT_PembHh1Duf9OPAgdAtkAkCKh3JRrieUgJhQwVkB6RkaAeciIQSy82GnLCkIJ5foquu28co4wAhV01q1vfs2eHVoepe8mLA3DV5_rPCn6zd43areqSYpza71QTV45kMwTTz6PbY-4PXGhz7KYYfLoKx1Gs8b_4PfgqmdHmzX6MKqpjM3pzlG7_PHcvacLF-fFrPpMtG0SPuEZYJZoXNBqeUmByEYmLSugNiKVjTLUsarvK4hqhlnoBXjmtRFZnJNrYZ0jO6PvW3wXwfT9XLrD2EfX0pKU5pnBHgaXXB06eC7Lhgr2-B2KvxKIHJAKQeUckApTyhj5u6YccaYf79gnInY-Adij29v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232760153</pqid></control><display><type>article</type><title>Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Xinxin ; Ling, Xianyao ; Zheng, Haifeng ; Chen, Zhonghui ; Xu, Yiwen</creator><creatorcontrib>Feng, Xinxin ; Ling, Xianyao ; Zheng, Haifeng ; Chen, Zhonghui ; Xu, Yiwen</creatorcontrib><description>Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine (AMSVM) with spatial-temporal correlation, which is named as AMSVM-STC. First, we explore both the nonlinearity and randomness of the traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the AMSVM. Second, we optimize the parameters of AMSVM with the adaptive particle swarm optimization algorithm, and propose a novel method to make the hybrid kernel's weight adjust adaptively according to the change tendency of real-time traffic flow. Third, we incorporate the spatial-temporal correlation information with AMSVM to predict the short-term traffic flow. We evaluate our algorithm by doing thorough experiment on real data sets. The results demonstrate that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the proposed AMSVM-STC outperforms the existing methods.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2018.2854913</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; adaptive multi-kernel support vector machine ; adaptive particle swarm optimization ; Algorithms ; Correlation ; Driving conditions ; Forecasting ; Kernel ; Kernels ; Particle swarm optimization ; Polynomials ; Prediction algorithms ; Predictive models ; Real-time systems ; Short term ; Short-term traffic flow prediction ; spatial-temporal correlation ; Support vector machines ; Traffic congestion ; Traffic flow</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-06, Vol.20 (6), p.2001-2013</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4684f8c7822f5e718841e3db10fb2b266345b7dd1f5e6541ca45c0d96e7c2fc13</citedby><cites>FETCH-LOGICAL-c293t-4684f8c7822f5e718841e3db10fb2b266345b7dd1f5e6541ca45c0d96e7c2fc13</cites><orcidid>0000-0003-4450-3489 ; 0000-0003-1166-2280 ; 0000-0002-2142-721X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8454853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8454853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Xinxin</creatorcontrib><creatorcontrib>Ling, Xianyao</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Chen, Zhonghui</creatorcontrib><creatorcontrib>Xu, Yiwen</creatorcontrib><title>Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine (AMSVM) with spatial-temporal correlation, which is named as AMSVM-STC. First, we explore both the nonlinearity and randomness of the traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the AMSVM. Second, we optimize the parameters of AMSVM with the adaptive particle swarm optimization algorithm, and propose a novel method to make the hybrid kernel's weight adjust adaptively according to the change tendency of real-time traffic flow. Third, we incorporate the spatial-temporal correlation information with AMSVM to predict the short-term traffic flow. We evaluate our algorithm by doing thorough experiment on real data sets. The results demonstrate that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the proposed AMSVM-STC outperforms the existing methods.</description><subject>Adaptive algorithms</subject><subject>adaptive multi-kernel support vector machine</subject><subject>adaptive particle swarm optimization</subject><subject>Algorithms</subject><subject>Correlation</subject><subject>Driving conditions</subject><subject>Forecasting</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Particle swarm optimization</subject><subject>Polynomials</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Real-time systems</subject><subject>Short term</subject><subject>Short-term traffic flow prediction</subject><subject>spatial-temporal correlation</subject><subject>Support vector machines</subject><subject>Traffic congestion</subject><subject>Traffic flow</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZkyZtejmG0-GGwqpehjRNWEa31LRT_PembHh1Duf9OPAgdAtkAkCKh3JRrieUgJhQwVkB6RkaAeciIQSy82GnLCkIJ5foquu28co4wAhV01q1vfs2eHVoepe8mLA3DV5_rPCn6zd43areqSYpza71QTV45kMwTTz6PbY-4PXGhz7KYYfLoKx1Gs8b_4PfgqmdHmzX6MKqpjM3pzlG7_PHcvacLF-fFrPpMtG0SPuEZYJZoXNBqeUmByEYmLSugNiKVjTLUsarvK4hqhlnoBXjmtRFZnJNrYZ0jO6PvW3wXwfT9XLrD2EfX0pKU5pnBHgaXXB06eC7Lhgr2-B2KvxKIHJAKQeUckApTyhj5u6YccaYf79gnInY-Adij29v</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Feng, Xinxin</creator><creator>Ling, Xianyao</creator><creator>Zheng, Haifeng</creator><creator>Chen, Zhonghui</creator><creator>Xu, Yiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4450-3489</orcidid><orcidid>https://orcid.org/0000-0003-1166-2280</orcidid><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid></search><sort><creationdate>20190601</creationdate><title>Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction</title><author>Feng, Xinxin ; Ling, Xianyao ; Zheng, Haifeng ; Chen, Zhonghui ; Xu, Yiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4684f8c7822f5e718841e3db10fb2b266345b7dd1f5e6541ca45c0d96e7c2fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive algorithms</topic><topic>adaptive multi-kernel support vector machine</topic><topic>adaptive particle swarm optimization</topic><topic>Algorithms</topic><topic>Correlation</topic><topic>Driving conditions</topic><topic>Forecasting</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Particle swarm optimization</topic><topic>Polynomials</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Real-time systems</topic><topic>Short term</topic><topic>Short-term traffic flow prediction</topic><topic>spatial-temporal correlation</topic><topic>Support vector machines</topic><topic>Traffic congestion</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xinxin</creatorcontrib><creatorcontrib>Ling, Xianyao</creatorcontrib><creatorcontrib>Zheng, Haifeng</creatorcontrib><creatorcontrib>Chen, Zhonghui</creatorcontrib><creatorcontrib>Xu, Yiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Xinxin</au><au>Ling, Xianyao</au><au>Zheng, Haifeng</au><au>Chen, Zhonghui</au><au>Xu, Yiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>20</volume><issue>6</issue><spage>2001</spage><epage>2013</epage><pages>2001-2013</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Accurate estimation of the traffic state can help to address the issue of urban traffic congestion, providing guiding advices for people's travel and traffic regulation. In this paper, we propose a novel short-term traffic flow prediction algorithm based on an adaptive multi-kernel support vector machine (AMSVM) with spatial-temporal correlation, which is named as AMSVM-STC. First, we explore both the nonlinearity and randomness of the traffic flow, and hybridize Gaussian kernel and polynomial kernel to constitute the AMSVM. Second, we optimize the parameters of AMSVM with the adaptive particle swarm optimization algorithm, and propose a novel method to make the hybrid kernel's weight adjust adaptively according to the change tendency of real-time traffic flow. Third, we incorporate the spatial-temporal correlation information with AMSVM to predict the short-term traffic flow. We evaluate our algorithm by doing thorough experiment on real data sets. The results demonstrate that our algorithm can do a timely and adaptive prediction even in the rush hour when the traffic conditions change rapidly. At the same time, the proposed AMSVM-STC outperforms the existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2018.2854913</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4450-3489</orcidid><orcidid>https://orcid.org/0000-0003-1166-2280</orcidid><orcidid>https://orcid.org/0000-0002-2142-721X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2019-06, Vol.20 (6), p.2001-2013
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2018_2854913
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
adaptive multi-kernel support vector machine
adaptive particle swarm optimization
Algorithms
Correlation
Driving conditions
Forecasting
Kernel
Kernels
Particle swarm optimization
Polynomials
Prediction algorithms
Predictive models
Real-time systems
Short term
Short-term traffic flow prediction
spatial-temporal correlation
Support vector machines
Traffic congestion
Traffic flow
title Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Multi-Kernel%20SVM%20With%20Spatial-Temporal%20Correlation%20for%20Short-Term%20Traffic%20Flow%20Prediction&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Feng,%20Xinxin&rft.date=2019-06-01&rft.volume=20&rft.issue=6&rft.spage=2001&rft.epage=2013&rft.pages=2001-2013&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2018.2854913&rft_dat=%3Cproquest_RIE%3E2232760153%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232760153&rft_id=info:pmid/&rft_ieee_id=8454853&rfr_iscdi=true