Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data

Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajecto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2019-02, Vol.20 (2), p.716-726
Hauptverfasser: Shan, Xiaonian, Hao, Peng, Chen, Xiaohong, Boriboonsomsin, Kanok, Wu, Guoyuan, Barth, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 2
container_start_page 716
container_title IEEE transactions on intelligent transportation systems
container_volume 20
creator Shan, Xiaonian
Hao, Peng
Chen, Xiaohong
Boriboonsomsin, Kanok
Wu, Guoyuan
Barth, Matthew J.
description Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajectory data can be collected in a large scale. However, most large-scaled mobile sensor data in practice are sparse in terms of sampling rate due to the consideration in implementation cost. In this paper, a new modal activity framework for vehicle energy/emissions estimation using sparse mobile sensor data is presented. The valid vehicle dynamic states are identified including four driving modes, named acceleration, deceleration, cruising, and idling. The best valid vehicle dynamic state with the largest probabilities is selected to reconstruct the second-by-second vehicle trajectory between consecutive sampling times. Then vehicle energy/emissions factors are estimated based on operating mode distributions. The proposed model is calibrated and validated using the Next Generation Simulation's dataset, and shows better performance in vehicle energy/emissions estimation compared with the linear interpolation model. Sensitivity analysis is performed to show the model accuracy with different time intervals. This paper provides a new methodology for vehicle energy/emissions estimation and extends the application area of sparse mobile sensor data.
doi_str_mv 10.1109/TITS.2018.2826571
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2018_2826571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8357975</ieee_id><sourcerecordid>2175397430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a18a13f4b4da528568e357022f21c522afabf8ed81a8a84cc105a196c8aec6243</originalsourceid><addsrcrecordid>eNo9kE9PwkAQxTdGExH9AMbLJp4LO9tu2R4Vq5JgTKR43QzLFEugxd1y4Nu7FfQ0L5Pfmz-PsVsQAwCRDYtJMRtIAXogtUzVCM5YD5TSkRCQnndaJlEmlLhkV96vQzdRAD1Wf9JXZTfE85rc6jDMt5X3VVN7nvu22mIbNH9ET0sexB9cOFyTbRt34B9kA926vf1F576qV3y2Q-eJvzWLKtAzqn3j-BO2eM0uStx4ujnVPps_58X4NZq-v0zGD9PIxnHaRggaIS6TRbJEJbVKNcVqJKQsJVglJZa4KDUtNaBGnVgLQiFkqdVINpVJ3Gf3x7k713zvybdm3exdHVYaCSMVZ6MkFoGCI2Vd472j0uxc-NkdDAjTxWq6WE0XqznFGjx3R09FRP-8DudlYe4PtGl04w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175397430</pqid></control><display><type>article</type><title>Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data</title><source>IEEE Electronic Library (IEL)</source><creator>Shan, Xiaonian ; Hao, Peng ; Chen, Xiaohong ; Boriboonsomsin, Kanok ; Wu, Guoyuan ; Barth, Matthew J.</creator><creatorcontrib>Shan, Xiaonian ; Hao, Peng ; Chen, Xiaohong ; Boriboonsomsin, Kanok ; Wu, Guoyuan ; Barth, Matthew J.</creatorcontrib><description>Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajectory data can be collected in a large scale. However, most large-scaled mobile sensor data in practice are sparse in terms of sampling rate due to the consideration in implementation cost. In this paper, a new modal activity framework for vehicle energy/emissions estimation using sparse mobile sensor data is presented. The valid vehicle dynamic states are identified including four driving modes, named acceleration, deceleration, cruising, and idling. The best valid vehicle dynamic state with the largest probabilities is selected to reconstruct the second-by-second vehicle trajectory between consecutive sampling times. Then vehicle energy/emissions factors are estimated based on operating mode distributions. The proposed model is calibrated and validated using the Next Generation Simulation's dataset, and shows better performance in vehicle energy/emissions estimation compared with the linear interpolation model. Sensitivity analysis is performed to show the model accuracy with different time intervals. This paper provides a new methodology for vehicle energy/emissions estimation and extends the application area of sparse mobile sensor data.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2018.2826571</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Computer simulation ; Data models ; Deceleration ; Energy ; Estimation ; Hidden Markov models ; Idling ; Interpolation ; maximum likelihood estimation ; Modal activity ; Model accuracy ; Roads ; Sampling ; Sensitivity analysis ; Sensors ; Trajectories ; Trajectory ; Vehicle dynamics ; Vehicle emissions ; vehicle energy/emissions estimation ; vehicle trajectory reconstruction</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-02, Vol.20 (2), p.716-726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a18a13f4b4da528568e357022f21c522afabf8ed81a8a84cc105a196c8aec6243</citedby><cites>FETCH-LOGICAL-c336t-a18a13f4b4da528568e357022f21c522afabf8ed81a8a84cc105a196c8aec6243</cites><orcidid>0000-0002-2452-4517 ; 0000-0003-2558-5343 ; 0000-0001-6707-6366 ; 0000-0002-4735-5859 ; 0000-0001-5864-7358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8357975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8357975$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shan, Xiaonian</creatorcontrib><creatorcontrib>Hao, Peng</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Boriboonsomsin, Kanok</creatorcontrib><creatorcontrib>Wu, Guoyuan</creatorcontrib><creatorcontrib>Barth, Matthew J.</creatorcontrib><title>Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajectory data can be collected in a large scale. However, most large-scaled mobile sensor data in practice are sparse in terms of sampling rate due to the consideration in implementation cost. In this paper, a new modal activity framework for vehicle energy/emissions estimation using sparse mobile sensor data is presented. The valid vehicle dynamic states are identified including four driving modes, named acceleration, deceleration, cruising, and idling. The best valid vehicle dynamic state with the largest probabilities is selected to reconstruct the second-by-second vehicle trajectory between consecutive sampling times. Then vehicle energy/emissions factors are estimated based on operating mode distributions. The proposed model is calibrated and validated using the Next Generation Simulation's dataset, and shows better performance in vehicle energy/emissions estimation compared with the linear interpolation model. Sensitivity analysis is performed to show the model accuracy with different time intervals. This paper provides a new methodology for vehicle energy/emissions estimation and extends the application area of sparse mobile sensor data.</description><subject>Acceleration</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Deceleration</subject><subject>Energy</subject><subject>Estimation</subject><subject>Hidden Markov models</subject><subject>Idling</subject><subject>Interpolation</subject><subject>maximum likelihood estimation</subject><subject>Modal activity</subject><subject>Model accuracy</subject><subject>Roads</subject><subject>Sampling</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>Vehicle dynamics</subject><subject>Vehicle emissions</subject><subject>vehicle energy/emissions estimation</subject><subject>vehicle trajectory reconstruction</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwkAQxTdGExH9AMbLJp4LO9tu2R4Vq5JgTKR43QzLFEugxd1y4Nu7FfQ0L5Pfmz-PsVsQAwCRDYtJMRtIAXogtUzVCM5YD5TSkRCQnndaJlEmlLhkV96vQzdRAD1Wf9JXZTfE85rc6jDMt5X3VVN7nvu22mIbNH9ET0sexB9cOFyTbRt34B9kA926vf1F576qV3y2Q-eJvzWLKtAzqn3j-BO2eM0uStx4ujnVPps_58X4NZq-v0zGD9PIxnHaRggaIS6TRbJEJbVKNcVqJKQsJVglJZa4KDUtNaBGnVgLQiFkqdVINpVJ3Gf3x7k713zvybdm3exdHVYaCSMVZ6MkFoGCI2Vd472j0uxc-NkdDAjTxWq6WE0XqznFGjx3R09FRP-8DudlYe4PtGl04w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Shan, Xiaonian</creator><creator>Hao, Peng</creator><creator>Chen, Xiaohong</creator><creator>Boriboonsomsin, Kanok</creator><creator>Wu, Guoyuan</creator><creator>Barth, Matthew J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2452-4517</orcidid><orcidid>https://orcid.org/0000-0003-2558-5343</orcidid><orcidid>https://orcid.org/0000-0001-6707-6366</orcidid><orcidid>https://orcid.org/0000-0002-4735-5859</orcidid><orcidid>https://orcid.org/0000-0001-5864-7358</orcidid></search><sort><creationdate>20190201</creationdate><title>Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data</title><author>Shan, Xiaonian ; Hao, Peng ; Chen, Xiaohong ; Boriboonsomsin, Kanok ; Wu, Guoyuan ; Barth, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a18a13f4b4da528568e357022f21c522afabf8ed81a8a84cc105a196c8aec6243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Deceleration</topic><topic>Energy</topic><topic>Estimation</topic><topic>Hidden Markov models</topic><topic>Idling</topic><topic>Interpolation</topic><topic>maximum likelihood estimation</topic><topic>Modal activity</topic><topic>Model accuracy</topic><topic>Roads</topic><topic>Sampling</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>Vehicle dynamics</topic><topic>Vehicle emissions</topic><topic>vehicle energy/emissions estimation</topic><topic>vehicle trajectory reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Xiaonian</creatorcontrib><creatorcontrib>Hao, Peng</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Boriboonsomsin, Kanok</creatorcontrib><creatorcontrib>Wu, Guoyuan</creatorcontrib><creatorcontrib>Barth, Matthew J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shan, Xiaonian</au><au>Hao, Peng</au><au>Chen, Xiaohong</au><au>Boriboonsomsin, Kanok</au><au>Wu, Guoyuan</au><au>Barth, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>20</volume><issue>2</issue><spage>716</spage><epage>726</epage><pages>716-726</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajectory data can be collected in a large scale. However, most large-scaled mobile sensor data in practice are sparse in terms of sampling rate due to the consideration in implementation cost. In this paper, a new modal activity framework for vehicle energy/emissions estimation using sparse mobile sensor data is presented. The valid vehicle dynamic states are identified including four driving modes, named acceleration, deceleration, cruising, and idling. The best valid vehicle dynamic state with the largest probabilities is selected to reconstruct the second-by-second vehicle trajectory between consecutive sampling times. Then vehicle energy/emissions factors are estimated based on operating mode distributions. The proposed model is calibrated and validated using the Next Generation Simulation's dataset, and shows better performance in vehicle energy/emissions estimation compared with the linear interpolation model. Sensitivity analysis is performed to show the model accuracy with different time intervals. This paper provides a new methodology for vehicle energy/emissions estimation and extends the application area of sparse mobile sensor data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2018.2826571</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2452-4517</orcidid><orcidid>https://orcid.org/0000-0003-2558-5343</orcidid><orcidid>https://orcid.org/0000-0001-6707-6366</orcidid><orcidid>https://orcid.org/0000-0002-4735-5859</orcidid><orcidid>https://orcid.org/0000-0001-5864-7358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2019-02, Vol.20 (2), p.716-726
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2018_2826571
source IEEE Electronic Library (IEL)
subjects Acceleration
Computer simulation
Data models
Deceleration
Energy
Estimation
Hidden Markov models
Idling
Interpolation
maximum likelihood estimation
Modal activity
Model accuracy
Roads
Sampling
Sensitivity analysis
Sensors
Trajectories
Trajectory
Vehicle dynamics
Vehicle emissions
vehicle energy/emissions estimation
vehicle trajectory reconstruction
title Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicle%20Energy/Emissions%20Estimation%20Based%20on%20Vehicle%20Trajectory%20Reconstruction%20Using%20Sparse%20Mobile%20Sensor%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Shan,%20Xiaonian&rft.date=2019-02-01&rft.volume=20&rft.issue=2&rft.spage=716&rft.epage=726&rft.pages=716-726&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2018.2826571&rft_dat=%3Cproquest_RIE%3E2175397430%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175397430&rft_id=info:pmid/&rft_ieee_id=8357975&rfr_iscdi=true