Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data
Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajecto...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2019-02, Vol.20 (2), p.716-726 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 726 |
---|---|
container_issue | 2 |
container_start_page | 716 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 20 |
creator | Shan, Xiaonian Hao, Peng Chen, Xiaohong Boriboonsomsin, Kanok Wu, Guoyuan Barth, Matthew J. |
description | Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajectory data can be collected in a large scale. However, most large-scaled mobile sensor data in practice are sparse in terms of sampling rate due to the consideration in implementation cost. In this paper, a new modal activity framework for vehicle energy/emissions estimation using sparse mobile sensor data is presented. The valid vehicle dynamic states are identified including four driving modes, named acceleration, deceleration, cruising, and idling. The best valid vehicle dynamic state with the largest probabilities is selected to reconstruct the second-by-second vehicle trajectory between consecutive sampling times. Then vehicle energy/emissions factors are estimated based on operating mode distributions. The proposed model is calibrated and validated using the Next Generation Simulation's dataset, and shows better performance in vehicle energy/emissions estimation compared with the linear interpolation model. Sensitivity analysis is performed to show the model accuracy with different time intervals. This paper provides a new methodology for vehicle energy/emissions estimation and extends the application area of sparse mobile sensor data. |
doi_str_mv | 10.1109/TITS.2018.2826571 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2018_2826571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8357975</ieee_id><sourcerecordid>2175397430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a18a13f4b4da528568e357022f21c522afabf8ed81a8a84cc105a196c8aec6243</originalsourceid><addsrcrecordid>eNo9kE9PwkAQxTdGExH9AMbLJp4LO9tu2R4Vq5JgTKR43QzLFEugxd1y4Nu7FfQ0L5Pfmz-PsVsQAwCRDYtJMRtIAXogtUzVCM5YD5TSkRCQnndaJlEmlLhkV96vQzdRAD1Wf9JXZTfE85rc6jDMt5X3VVN7nvu22mIbNH9ET0sexB9cOFyTbRt34B9kA926vf1F576qV3y2Q-eJvzWLKtAzqn3j-BO2eM0uStx4ujnVPps_58X4NZq-v0zGD9PIxnHaRggaIS6TRbJEJbVKNcVqJKQsJVglJZa4KDUtNaBGnVgLQiFkqdVINpVJ3Gf3x7k713zvybdm3exdHVYaCSMVZ6MkFoGCI2Vd472j0uxc-NkdDAjTxWq6WE0XqznFGjx3R09FRP-8DudlYe4PtGl04w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175397430</pqid></control><display><type>article</type><title>Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data</title><source>IEEE Electronic Library (IEL)</source><creator>Shan, Xiaonian ; Hao, Peng ; Chen, Xiaohong ; Boriboonsomsin, Kanok ; Wu, Guoyuan ; Barth, Matthew J.</creator><creatorcontrib>Shan, Xiaonian ; Hao, Peng ; Chen, Xiaohong ; Boriboonsomsin, Kanok ; Wu, Guoyuan ; Barth, Matthew J.</creatorcontrib><description>Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajectory data can be collected in a large scale. However, most large-scaled mobile sensor data in practice are sparse in terms of sampling rate due to the consideration in implementation cost. In this paper, a new modal activity framework for vehicle energy/emissions estimation using sparse mobile sensor data is presented. The valid vehicle dynamic states are identified including four driving modes, named acceleration, deceleration, cruising, and idling. The best valid vehicle dynamic state with the largest probabilities is selected to reconstruct the second-by-second vehicle trajectory between consecutive sampling times. Then vehicle energy/emissions factors are estimated based on operating mode distributions. The proposed model is calibrated and validated using the Next Generation Simulation's dataset, and shows better performance in vehicle energy/emissions estimation compared with the linear interpolation model. Sensitivity analysis is performed to show the model accuracy with different time intervals. This paper provides a new methodology for vehicle energy/emissions estimation and extends the application area of sparse mobile sensor data.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2018.2826571</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Computer simulation ; Data models ; Deceleration ; Energy ; Estimation ; Hidden Markov models ; Idling ; Interpolation ; maximum likelihood estimation ; Modal activity ; Model accuracy ; Roads ; Sampling ; Sensitivity analysis ; Sensors ; Trajectories ; Trajectory ; Vehicle dynamics ; Vehicle emissions ; vehicle energy/emissions estimation ; vehicle trajectory reconstruction</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-02, Vol.20 (2), p.716-726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a18a13f4b4da528568e357022f21c522afabf8ed81a8a84cc105a196c8aec6243</citedby><cites>FETCH-LOGICAL-c336t-a18a13f4b4da528568e357022f21c522afabf8ed81a8a84cc105a196c8aec6243</cites><orcidid>0000-0002-2452-4517 ; 0000-0003-2558-5343 ; 0000-0001-6707-6366 ; 0000-0002-4735-5859 ; 0000-0001-5864-7358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8357975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8357975$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shan, Xiaonian</creatorcontrib><creatorcontrib>Hao, Peng</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Boriboonsomsin, Kanok</creatorcontrib><creatorcontrib>Wu, Guoyuan</creatorcontrib><creatorcontrib>Barth, Matthew J.</creatorcontrib><title>Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajectory data can be collected in a large scale. However, most large-scaled mobile sensor data in practice are sparse in terms of sampling rate due to the consideration in implementation cost. In this paper, a new modal activity framework for vehicle energy/emissions estimation using sparse mobile sensor data is presented. The valid vehicle dynamic states are identified including four driving modes, named acceleration, deceleration, cruising, and idling. The best valid vehicle dynamic state with the largest probabilities is selected to reconstruct the second-by-second vehicle trajectory between consecutive sampling times. Then vehicle energy/emissions factors are estimated based on operating mode distributions. The proposed model is calibrated and validated using the Next Generation Simulation's dataset, and shows better performance in vehicle energy/emissions estimation compared with the linear interpolation model. Sensitivity analysis is performed to show the model accuracy with different time intervals. This paper provides a new methodology for vehicle energy/emissions estimation and extends the application area of sparse mobile sensor data.</description><subject>Acceleration</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Deceleration</subject><subject>Energy</subject><subject>Estimation</subject><subject>Hidden Markov models</subject><subject>Idling</subject><subject>Interpolation</subject><subject>maximum likelihood estimation</subject><subject>Modal activity</subject><subject>Model accuracy</subject><subject>Roads</subject><subject>Sampling</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>Vehicle dynamics</subject><subject>Vehicle emissions</subject><subject>vehicle energy/emissions estimation</subject><subject>vehicle trajectory reconstruction</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwkAQxTdGExH9AMbLJp4LO9tu2R4Vq5JgTKR43QzLFEugxd1y4Nu7FfQ0L5Pfmz-PsVsQAwCRDYtJMRtIAXogtUzVCM5YD5TSkRCQnndaJlEmlLhkV96vQzdRAD1Wf9JXZTfE85rc6jDMt5X3VVN7nvu22mIbNH9ET0sexB9cOFyTbRt34B9kA926vf1F576qV3y2Q-eJvzWLKtAzqn3j-BO2eM0uStx4ujnVPps_58X4NZq-v0zGD9PIxnHaRggaIS6TRbJEJbVKNcVqJKQsJVglJZa4KDUtNaBGnVgLQiFkqdVINpVJ3Gf3x7k713zvybdm3exdHVYaCSMVZ6MkFoGCI2Vd472j0uxc-NkdDAjTxWq6WE0XqznFGjx3R09FRP-8DudlYe4PtGl04w</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Shan, Xiaonian</creator><creator>Hao, Peng</creator><creator>Chen, Xiaohong</creator><creator>Boriboonsomsin, Kanok</creator><creator>Wu, Guoyuan</creator><creator>Barth, Matthew J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2452-4517</orcidid><orcidid>https://orcid.org/0000-0003-2558-5343</orcidid><orcidid>https://orcid.org/0000-0001-6707-6366</orcidid><orcidid>https://orcid.org/0000-0002-4735-5859</orcidid><orcidid>https://orcid.org/0000-0001-5864-7358</orcidid></search><sort><creationdate>20190201</creationdate><title>Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data</title><author>Shan, Xiaonian ; Hao, Peng ; Chen, Xiaohong ; Boriboonsomsin, Kanok ; Wu, Guoyuan ; Barth, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a18a13f4b4da528568e357022f21c522afabf8ed81a8a84cc105a196c8aec6243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Deceleration</topic><topic>Energy</topic><topic>Estimation</topic><topic>Hidden Markov models</topic><topic>Idling</topic><topic>Interpolation</topic><topic>maximum likelihood estimation</topic><topic>Modal activity</topic><topic>Model accuracy</topic><topic>Roads</topic><topic>Sampling</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>Vehicle dynamics</topic><topic>Vehicle emissions</topic><topic>vehicle energy/emissions estimation</topic><topic>vehicle trajectory reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Xiaonian</creatorcontrib><creatorcontrib>Hao, Peng</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Boriboonsomsin, Kanok</creatorcontrib><creatorcontrib>Wu, Guoyuan</creatorcontrib><creatorcontrib>Barth, Matthew J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shan, Xiaonian</au><au>Hao, Peng</au><au>Chen, Xiaohong</au><au>Boriboonsomsin, Kanok</au><au>Wu, Guoyuan</au><au>Barth, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>20</volume><issue>2</issue><spage>716</spage><epage>726</epage><pages>716-726</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Microscopic vehicle emissions models have been well developed in the past decades. Those models require second-by-second vehicle trajectory data as a key input to perform vehicle energy/emissions estimation. Due to the omnipresence of mobile sensors such as floating cars, real-world vehicle trajectory data can be collected in a large scale. However, most large-scaled mobile sensor data in practice are sparse in terms of sampling rate due to the consideration in implementation cost. In this paper, a new modal activity framework for vehicle energy/emissions estimation using sparse mobile sensor data is presented. The valid vehicle dynamic states are identified including four driving modes, named acceleration, deceleration, cruising, and idling. The best valid vehicle dynamic state with the largest probabilities is selected to reconstruct the second-by-second vehicle trajectory between consecutive sampling times. Then vehicle energy/emissions factors are estimated based on operating mode distributions. The proposed model is calibrated and validated using the Next Generation Simulation's dataset, and shows better performance in vehicle energy/emissions estimation compared with the linear interpolation model. Sensitivity analysis is performed to show the model accuracy with different time intervals. This paper provides a new methodology for vehicle energy/emissions estimation and extends the application area of sparse mobile sensor data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2018.2826571</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2452-4517</orcidid><orcidid>https://orcid.org/0000-0003-2558-5343</orcidid><orcidid>https://orcid.org/0000-0001-6707-6366</orcidid><orcidid>https://orcid.org/0000-0002-4735-5859</orcidid><orcidid>https://orcid.org/0000-0001-5864-7358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2019-02, Vol.20 (2), p.716-726 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2018_2826571 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Computer simulation Data models Deceleration Energy Estimation Hidden Markov models Idling Interpolation maximum likelihood estimation Modal activity Model accuracy Roads Sampling Sensitivity analysis Sensors Trajectories Trajectory Vehicle dynamics Vehicle emissions vehicle energy/emissions estimation vehicle trajectory reconstruction |
title | Vehicle Energy/Emissions Estimation Based on Vehicle Trajectory Reconstruction Using Sparse Mobile Sensor Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vehicle%20Energy/Emissions%20Estimation%20Based%20on%20Vehicle%20Trajectory%20Reconstruction%20Using%20Sparse%20Mobile%20Sensor%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Shan,%20Xiaonian&rft.date=2019-02-01&rft.volume=20&rft.issue=2&rft.spage=716&rft.epage=726&rft.pages=716-726&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2018.2826571&rft_dat=%3Cproquest_RIE%3E2175397430%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175397430&rft_id=info:pmid/&rft_ieee_id=8357975&rfr_iscdi=true |