SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization

This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of eme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2018-04, Vol.19 (4), p.1038-1053
Hauptverfasser: Shen, Yiwen, Lee, Jinho, Jeong, Hohyeon, Jeong, Jaehoon, Lee, Eunseok, Du, David H. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue 4
container_start_page 1038
container_title IEEE transactions on intelligent transportation systems
container_volume 19
creator Shen, Yiwen
Lee, Jinho
Jeong, Hohyeon
Jeong, Jaehoon
Lee, Eunseok
Du, David H. C.
description This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of emergency services as well as the navigation routes of vehicles around accident areas. Based on the congestion contribution model of SAINT and aggregated information from vehicles in the vehicular cloud, we propose a virtual path reservation strategy for emergency vehicles to guarantee a fast emergency service delivery. We also develop an accident area protection scheme based on an adjusted congestion contribution matrix and protection zones to evacuate vehicles in the accident area. To further reduce travel delay of neighbor vehicles in the accident area, we also present a dynamic traffic flow control model. Through extensive simulations with a real-world map, SAINT+ outperforms other state-of-the-art schemes for the travel delay of emergency vehicles. In scenarios with a high vehicle density, SAINT+ reduces the travel delay of emergency vehicles by 42.2%.
doi_str_mv 10.1109/TITS.2017.2710881
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2017_2710881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953571</ieee_id><sourcerecordid>10_1109_TITS_2017_2710881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-f377d6d0923494997bfdef76497ceb01bd2d8bd78df3840eff65e35dd6dc558a3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN7kfnTmNE3TeDfm1MLYLlZvLW1yMiLdOtIymE9vOodX5-fwfwfOR8gjsCkAU89FXmymMQM5jSWwLIMrMgIhsogxSK-HHCeRYoLdkruu-w7bRACMyNdmlq-KyQvdYGOjmakOvTsizfc9-kqf86o6um3Vu3ZPi7ZtJtS2ni526Le416cA-qPTSF-xCW1_outwYud-zsQ9ubFV0-HDZY7J59uimH9Ey_V7Pp8tIw0Z6yPLpTSpYSrmiUqUkrU1aGWaKKmxZlCb2GS1kZmxPEsYWpsK5MIERocnKz4m8HdX-7brPNry4N2u8qcSWDkIKgdB5SCovAgKzNMf4xDxvy-V4EIC_wW-iWL_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Yiwen ; Lee, Jinho ; Jeong, Hohyeon ; Jeong, Jaehoon ; Lee, Eunseok ; Du, David H. C.</creator><creatorcontrib>Shen, Yiwen ; Lee, Jinho ; Jeong, Hohyeon ; Jeong, Jaehoon ; Lee, Eunseok ; Du, David H. C.</creatorcontrib><description>This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of emergency services as well as the navigation routes of vehicles around accident areas. Based on the congestion contribution model of SAINT and aggregated information from vehicles in the vehicular cloud, we propose a virtual path reservation strategy for emergency vehicles to guarantee a fast emergency service delivery. We also develop an accident area protection scheme based on an adjusted congestion contribution matrix and protection zones to evacuate vehicles in the accident area. To further reduce travel delay of neighbor vehicles in the accident area, we also present a dynamic traffic flow control model. Through extensive simulations with a real-world map, SAINT+ outperforms other state-of-the-art schemes for the travel delay of emergency vehicles. In scenarios with a high vehicle density, SAINT+ reduces the travel delay of emergency vehicles by 42.2%.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2710881</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Emergency services ; interactive ; Navigation ; path planning ; road accident ; Road accidents ; road emergency service ; Roads ; self-adaptive ; Vehicle dynamics ; Vehicular ad hoc networks ; vehicular networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2018-04, Vol.19 (4), p.1038-1053</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c180t-f377d6d0923494997bfdef76497ceb01bd2d8bd78df3840eff65e35dd6dc558a3</citedby><cites>FETCH-LOGICAL-c180t-f377d6d0923494997bfdef76497ceb01bd2d8bd78df3840eff65e35dd6dc558a3</cites><orcidid>0000-0002-0648-7986 ; 0000-0001-8490-758X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7953571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Yiwen</creatorcontrib><creatorcontrib>Lee, Jinho</creatorcontrib><creatorcontrib>Jeong, Hohyeon</creatorcontrib><creatorcontrib>Jeong, Jaehoon</creatorcontrib><creatorcontrib>Lee, Eunseok</creatorcontrib><creatorcontrib>Du, David H. C.</creatorcontrib><title>SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of emergency services as well as the navigation routes of vehicles around accident areas. Based on the congestion contribution model of SAINT and aggregated information from vehicles in the vehicular cloud, we propose a virtual path reservation strategy for emergency vehicles to guarantee a fast emergency service delivery. We also develop an accident area protection scheme based on an adjusted congestion contribution matrix and protection zones to evacuate vehicles in the accident area. To further reduce travel delay of neighbor vehicles in the accident area, we also present a dynamic traffic flow control model. Through extensive simulations with a real-world map, SAINT+ outperforms other state-of-the-art schemes for the travel delay of emergency vehicles. In scenarios with a high vehicle density, SAINT+ reduces the travel delay of emergency vehicles by 42.2%.</description><subject>Emergency services</subject><subject>interactive</subject><subject>Navigation</subject><subject>path planning</subject><subject>road accident</subject><subject>Road accidents</subject><subject>road emergency service</subject><subject>Roads</subject><subject>self-adaptive</subject><subject>Vehicle dynamics</subject><subject>Vehicular ad hoc networks</subject><subject>vehicular networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN7kfnTmNE3TeDfm1MLYLlZvLW1yMiLdOtIymE9vOodX5-fwfwfOR8gjsCkAU89FXmymMQM5jSWwLIMrMgIhsogxSK-HHCeRYoLdkruu-w7bRACMyNdmlq-KyQvdYGOjmakOvTsizfc9-kqf86o6um3Vu3ZPi7ZtJtS2ni526Le416cA-qPTSF-xCW1_outwYud-zsQ9ubFV0-HDZY7J59uimH9Ey_V7Pp8tIw0Z6yPLpTSpYSrmiUqUkrU1aGWaKKmxZlCb2GS1kZmxPEsYWpsK5MIERocnKz4m8HdX-7brPNry4N2u8qcSWDkIKgdB5SCovAgKzNMf4xDxvy-V4EIC_wW-iWL_</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Shen, Yiwen</creator><creator>Lee, Jinho</creator><creator>Jeong, Hohyeon</creator><creator>Jeong, Jaehoon</creator><creator>Lee, Eunseok</creator><creator>Du, David H. C.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0648-7986</orcidid><orcidid>https://orcid.org/0000-0001-8490-758X</orcidid></search><sort><creationdate>201804</creationdate><title>SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization</title><author>Shen, Yiwen ; Lee, Jinho ; Jeong, Hohyeon ; Jeong, Jaehoon ; Lee, Eunseok ; Du, David H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-f377d6d0923494997bfdef76497ceb01bd2d8bd78df3840eff65e35dd6dc558a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Emergency services</topic><topic>interactive</topic><topic>Navigation</topic><topic>path planning</topic><topic>road accident</topic><topic>Road accidents</topic><topic>road emergency service</topic><topic>Roads</topic><topic>self-adaptive</topic><topic>Vehicle dynamics</topic><topic>Vehicular ad hoc networks</topic><topic>vehicular networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yiwen</creatorcontrib><creatorcontrib>Lee, Jinho</creatorcontrib><creatorcontrib>Jeong, Hohyeon</creatorcontrib><creatorcontrib>Jeong, Jaehoon</creatorcontrib><creatorcontrib>Lee, Eunseok</creatorcontrib><creatorcontrib>Du, David H. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Yiwen</au><au>Lee, Jinho</au><au>Jeong, Hohyeon</au><au>Jeong, Jaehoon</au><au>Lee, Eunseok</au><au>Du, David H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2018-04</date><risdate>2018</risdate><volume>19</volume><issue>4</issue><spage>1038</spage><epage>1053</epage><pages>1038-1053</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of emergency services as well as the navigation routes of vehicles around accident areas. Based on the congestion contribution model of SAINT and aggregated information from vehicles in the vehicular cloud, we propose a virtual path reservation strategy for emergency vehicles to guarantee a fast emergency service delivery. We also develop an accident area protection scheme based on an adjusted congestion contribution matrix and protection zones to evacuate vehicles in the accident area. To further reduce travel delay of neighbor vehicles in the accident area, we also present a dynamic traffic flow control model. Through extensive simulations with a real-world map, SAINT+ outperforms other state-of-the-art schemes for the travel delay of emergency vehicles. In scenarios with a high vehicle density, SAINT+ reduces the travel delay of emergency vehicles by 42.2%.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2017.2710881</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0648-7986</orcidid><orcidid>https://orcid.org/0000-0001-8490-758X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2018-04, Vol.19 (4), p.1038-1053
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2017_2710881
source IEEE Electronic Library (IEL)
subjects Emergency services
interactive
Navigation
path planning
road accident
Road accidents
road emergency service
Roads
self-adaptive
Vehicle dynamics
Vehicular ad hoc networks
vehicular networks
title SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAINT+:%20Self-Adaptive%20Interactive%20Navigation%20Tool+%20for%20Emergency%20Service%20Delivery%20Optimization&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Shen,%20Yiwen&rft.date=2018-04&rft.volume=19&rft.issue=4&rft.spage=1038&rft.epage=1053&rft.pages=1038-1053&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2710881&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2017_2710881%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7953571&rfr_iscdi=true