SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization
This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of eme...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2018-04, Vol.19 (4), p.1038-1053 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1053 |
---|---|
container_issue | 4 |
container_start_page | 1038 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 19 |
creator | Shen, Yiwen Lee, Jinho Jeong, Hohyeon Jeong, Jaehoon Lee, Eunseok Du, David H. C. |
description | This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of emergency services as well as the navigation routes of vehicles around accident areas. Based on the congestion contribution model of SAINT and aggregated information from vehicles in the vehicular cloud, we propose a virtual path reservation strategy for emergency vehicles to guarantee a fast emergency service delivery. We also develop an accident area protection scheme based on an adjusted congestion contribution matrix and protection zones to evacuate vehicles in the accident area. To further reduce travel delay of neighbor vehicles in the accident area, we also present a dynamic traffic flow control model. Through extensive simulations with a real-world map, SAINT+ outperforms other state-of-the-art schemes for the travel delay of emergency vehicles. In scenarios with a high vehicle density, SAINT+ reduces the travel delay of emergency vehicles by 42.2%. |
doi_str_mv | 10.1109/TITS.2017.2710881 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2017_2710881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7953571</ieee_id><sourcerecordid>10_1109_TITS_2017_2710881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-f377d6d0923494997bfdef76497ceb01bd2d8bd78df3840eff65e35dd6dc558a3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN7kfnTmNE3TeDfm1MLYLlZvLW1yMiLdOtIymE9vOodX5-fwfwfOR8gjsCkAU89FXmymMQM5jSWwLIMrMgIhsogxSK-HHCeRYoLdkruu-w7bRACMyNdmlq-KyQvdYGOjmakOvTsizfc9-kqf86o6um3Vu3ZPi7ZtJtS2ni526Le416cA-qPTSF-xCW1_outwYud-zsQ9ubFV0-HDZY7J59uimH9Ey_V7Pp8tIw0Z6yPLpTSpYSrmiUqUkrU1aGWaKKmxZlCb2GS1kZmxPEsYWpsK5MIERocnKz4m8HdX-7brPNry4N2u8qcSWDkIKgdB5SCovAgKzNMf4xDxvy-V4EIC_wW-iWL_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Yiwen ; Lee, Jinho ; Jeong, Hohyeon ; Jeong, Jaehoon ; Lee, Eunseok ; Du, David H. C.</creator><creatorcontrib>Shen, Yiwen ; Lee, Jinho ; Jeong, Hohyeon ; Jeong, Jaehoon ; Lee, Eunseok ; Du, David H. C.</creatorcontrib><description>This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of emergency services as well as the navigation routes of vehicles around accident areas. Based on the congestion contribution model of SAINT and aggregated information from vehicles in the vehicular cloud, we propose a virtual path reservation strategy for emergency vehicles to guarantee a fast emergency service delivery. We also develop an accident area protection scheme based on an adjusted congestion contribution matrix and protection zones to evacuate vehicles in the accident area. To further reduce travel delay of neighbor vehicles in the accident area, we also present a dynamic traffic flow control model. Through extensive simulations with a real-world map, SAINT+ outperforms other state-of-the-art schemes for the travel delay of emergency vehicles. In scenarios with a high vehicle density, SAINT+ reduces the travel delay of emergency vehicles by 42.2%.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2710881</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Emergency services ; interactive ; Navigation ; path planning ; road accident ; Road accidents ; road emergency service ; Roads ; self-adaptive ; Vehicle dynamics ; Vehicular ad hoc networks ; vehicular networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2018-04, Vol.19 (4), p.1038-1053</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c180t-f377d6d0923494997bfdef76497ceb01bd2d8bd78df3840eff65e35dd6dc558a3</citedby><cites>FETCH-LOGICAL-c180t-f377d6d0923494997bfdef76497ceb01bd2d8bd78df3840eff65e35dd6dc558a3</cites><orcidid>0000-0002-0648-7986 ; 0000-0001-8490-758X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7953571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7953571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Yiwen</creatorcontrib><creatorcontrib>Lee, Jinho</creatorcontrib><creatorcontrib>Jeong, Hohyeon</creatorcontrib><creatorcontrib>Jeong, Jaehoon</creatorcontrib><creatorcontrib>Lee, Eunseok</creatorcontrib><creatorcontrib>Du, David H. C.</creatorcontrib><title>SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of emergency services as well as the navigation routes of vehicles around accident areas. Based on the congestion contribution model of SAINT and aggregated information from vehicles in the vehicular cloud, we propose a virtual path reservation strategy for emergency vehicles to guarantee a fast emergency service delivery. We also develop an accident area protection scheme based on an adjusted congestion contribution matrix and protection zones to evacuate vehicles in the accident area. To further reduce travel delay of neighbor vehicles in the accident area, we also present a dynamic traffic flow control model. Through extensive simulations with a real-world map, SAINT+ outperforms other state-of-the-art schemes for the travel delay of emergency vehicles. In scenarios with a high vehicle density, SAINT+ reduces the travel delay of emergency vehicles by 42.2%.</description><subject>Emergency services</subject><subject>interactive</subject><subject>Navigation</subject><subject>path planning</subject><subject>road accident</subject><subject>Road accidents</subject><subject>road emergency service</subject><subject>Roads</subject><subject>self-adaptive</subject><subject>Vehicle dynamics</subject><subject>Vehicular ad hoc networks</subject><subject>vehicular networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN7kfnTmNE3TeDfm1MLYLlZvLW1yMiLdOtIymE9vOodX5-fwfwfOR8gjsCkAU89FXmymMQM5jSWwLIMrMgIhsogxSK-HHCeRYoLdkruu-w7bRACMyNdmlq-KyQvdYGOjmakOvTsizfc9-kqf86o6um3Vu3ZPi7ZtJtS2ni526Le416cA-qPTSF-xCW1_outwYud-zsQ9ubFV0-HDZY7J59uimH9Ey_V7Pp8tIw0Z6yPLpTSpYSrmiUqUkrU1aGWaKKmxZlCb2GS1kZmxPEsYWpsK5MIERocnKz4m8HdX-7brPNry4N2u8qcSWDkIKgdB5SCovAgKzNMf4xDxvy-V4EIC_wW-iWL_</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Shen, Yiwen</creator><creator>Lee, Jinho</creator><creator>Jeong, Hohyeon</creator><creator>Jeong, Jaehoon</creator><creator>Lee, Eunseok</creator><creator>Du, David H. C.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0648-7986</orcidid><orcidid>https://orcid.org/0000-0001-8490-758X</orcidid></search><sort><creationdate>201804</creationdate><title>SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization</title><author>Shen, Yiwen ; Lee, Jinho ; Jeong, Hohyeon ; Jeong, Jaehoon ; Lee, Eunseok ; Du, David H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-f377d6d0923494997bfdef76497ceb01bd2d8bd78df3840eff65e35dd6dc558a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Emergency services</topic><topic>interactive</topic><topic>Navigation</topic><topic>path planning</topic><topic>road accident</topic><topic>Road accidents</topic><topic>road emergency service</topic><topic>Roads</topic><topic>self-adaptive</topic><topic>Vehicle dynamics</topic><topic>Vehicular ad hoc networks</topic><topic>vehicular networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yiwen</creatorcontrib><creatorcontrib>Lee, Jinho</creatorcontrib><creatorcontrib>Jeong, Hohyeon</creatorcontrib><creatorcontrib>Jeong, Jaehoon</creatorcontrib><creatorcontrib>Lee, Eunseok</creatorcontrib><creatorcontrib>Du, David H. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Yiwen</au><au>Lee, Jinho</au><au>Jeong, Hohyeon</au><au>Jeong, Jaehoon</au><au>Lee, Eunseok</au><au>Du, David H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2018-04</date><risdate>2018</risdate><volume>19</volume><issue>4</issue><spage>1038</spage><epage>1053</epage><pages>1038-1053</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper proposes an evolved Self-Adaptive Interactive Navigation Tool (SAINT+) to reduce the delivery time of emergency services and to improve navigation efficiency for the vehicles influenced by accidents. To the best of our knowledge, SAINT+ is the first attempt to optimize the delivery of emergency services as well as the navigation routes of vehicles around accident areas. Based on the congestion contribution model of SAINT and aggregated information from vehicles in the vehicular cloud, we propose a virtual path reservation strategy for emergency vehicles to guarantee a fast emergency service delivery. We also develop an accident area protection scheme based on an adjusted congestion contribution matrix and protection zones to evacuate vehicles in the accident area. To further reduce travel delay of neighbor vehicles in the accident area, we also present a dynamic traffic flow control model. Through extensive simulations with a real-world map, SAINT+ outperforms other state-of-the-art schemes for the travel delay of emergency vehicles. In scenarios with a high vehicle density, SAINT+ reduces the travel delay of emergency vehicles by 42.2%.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2017.2710881</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0648-7986</orcidid><orcidid>https://orcid.org/0000-0001-8490-758X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2018-04, Vol.19 (4), p.1038-1053 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2017_2710881 |
source | IEEE Electronic Library (IEL) |
subjects | Emergency services interactive Navigation path planning road accident Road accidents road emergency service Roads self-adaptive Vehicle dynamics Vehicular ad hoc networks vehicular networks |
title | SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAINT+:%20Self-Adaptive%20Interactive%20Navigation%20Tool+%20for%20Emergency%20Service%20Delivery%20Optimization&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Shen,%20Yiwen&rft.date=2018-04&rft.volume=19&rft.issue=4&rft.spage=1038&rft.epage=1053&rft.pages=1038-1053&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2710881&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2017_2710881%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7953571&rfr_iscdi=true |