Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing
Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo imag...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2017-11, Vol.18 (11), p.3093-3102 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3102 |
---|---|
container_issue | 11 |
container_start_page | 3093 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 18 |
creator | Long Chen Lei Fan Guodong Xie Kai Huang Nuchter, Andreas |
description | Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo image pairs on mobile platforms. First, we use a variant of the semi-global matching algorithm to compute initial disparity maps. Second, assisted by the initial disparities, boundaries in the image segmentation produced by simple linear iterative clustering are classified into coplanar, hinge, and occlusion. Moving points are obtained during ego-motion estimation by a modified random sample consensus) algorithm without resorting to time-consuming dense optical flow. Finally, the moving objects are extracted by merging superpixels according to the boundary types and their movements. The proposed method is accelerated on the GPU at 20 frames per second. The data which we use for testing and benchmarking is released, thus completing similar data sets. It includes 812 image pairs and 924 moving objects with ground truth for better algorithms evaluation. Experimental results demonstrate that the proposed method achieves competitive results in terms of moving-object detection and their motion state estimation in challenging urban scenarios. |
doi_str_mv | 10.1109/TITS.2017.2680538 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2017_2680538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7891876</ieee_id><sourcerecordid>10_1109_TITS_2017_2680538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-64d90f6fca28660c802161e6e821fc342c9f78f50e594f20f8348bbb5688044d3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN7kBTpP0iRNL2W6OZhs0O26tNmJdmyNJHHg25uy4dV3-Pn_c_ER8shgwhiUz5vFpppwYMWEKw0y11dkxKTUGQBT18PNRVaChFtyF8I-pUIyNiLVhzt1_We2avdoIn3FmNC5ns68O9Kp6wOan9idkFYRPTq6bjof6DakEa0OTR9xR9eJqXB0Ln6l_J7c2OYQ8OHCMdnO3jbT92y5mi-mL8vMcCVjpsSuBKusabhWCowGzhRDhZoza3LBTWkLbSWgLIXlYHUudNu2UmkNQuzyMWHnv8a7EDza-tt3x8b_1gzqwUo9WKkHK_XFSto8nTcdIv73C10yXaj8D_oPXhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing</title><source>IEEE Electronic Library (IEL)</source><creator>Long Chen ; Lei Fan ; Guodong Xie ; Kai Huang ; Nuchter, Andreas</creator><creatorcontrib>Long Chen ; Lei Fan ; Guodong Xie ; Kai Huang ; Nuchter, Andreas</creatorcontrib><description>Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo image pairs on mobile platforms. First, we use a variant of the semi-global matching algorithm to compute initial disparity maps. Second, assisted by the initial disparities, boundaries in the image segmentation produced by simple linear iterative clustering are classified into coplanar, hinge, and occlusion. Moving points are obtained during ego-motion estimation by a modified random sample consensus) algorithm without resorting to time-consuming dense optical flow. Finally, the moving objects are extracted by merging superpixels according to the boundary types and their movements. The proposed method is accelerated on the GPU at 20 frames per second. The data which we use for testing and benchmarking is released, thus completing similar data sets. It includes 812 image pairs and 924 moving objects with ground truth for better algorithms evaluation. Experimental results demonstrate that the proposed method achieves competitive results in terms of moving-object detection and their motion state estimation in challenging urban scenarios.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2680538</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>autonomous vehicles ; Cameras ; Graphics processing units ; Image segmentation ; Motion segmentation ; Optical imaging ; simultaneous localization and mapping ; Stereo vision ; Three-dimensional displays ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2017-11, Vol.18 (11), p.3093-3102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-64d90f6fca28660c802161e6e821fc342c9f78f50e594f20f8348bbb5688044d3</citedby><cites>FETCH-LOGICAL-c265t-64d90f6fca28660c802161e6e821fc342c9f78f50e594f20f8348bbb5688044d3</cites><orcidid>0000-0003-0359-7810 ; 0000-0003-4925-0572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7891876$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7891876$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Long Chen</creatorcontrib><creatorcontrib>Lei Fan</creatorcontrib><creatorcontrib>Guodong Xie</creatorcontrib><creatorcontrib>Kai Huang</creatorcontrib><creatorcontrib>Nuchter, Andreas</creatorcontrib><title>Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo image pairs on mobile platforms. First, we use a variant of the semi-global matching algorithm to compute initial disparity maps. Second, assisted by the initial disparities, boundaries in the image segmentation produced by simple linear iterative clustering are classified into coplanar, hinge, and occlusion. Moving points are obtained during ego-motion estimation by a modified random sample consensus) algorithm without resorting to time-consuming dense optical flow. Finally, the moving objects are extracted by merging superpixels according to the boundary types and their movements. The proposed method is accelerated on the GPU at 20 frames per second. The data which we use for testing and benchmarking is released, thus completing similar data sets. It includes 812 image pairs and 924 moving objects with ground truth for better algorithms evaluation. Experimental results demonstrate that the proposed method achieves competitive results in terms of moving-object detection and their motion state estimation in challenging urban scenarios.</description><subject>autonomous vehicles</subject><subject>Cameras</subject><subject>Graphics processing units</subject><subject>Image segmentation</subject><subject>Motion segmentation</subject><subject>Optical imaging</subject><subject>simultaneous localization and mapping</subject><subject>Stereo vision</subject><subject>Three-dimensional displays</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN7kBTpP0iRNL2W6OZhs0O26tNmJdmyNJHHg25uy4dV3-Pn_c_ER8shgwhiUz5vFpppwYMWEKw0y11dkxKTUGQBT18PNRVaChFtyF8I-pUIyNiLVhzt1_We2avdoIn3FmNC5ns68O9Kp6wOan9idkFYRPTq6bjof6DakEa0OTR9xR9eJqXB0Ln6l_J7c2OYQ8OHCMdnO3jbT92y5mi-mL8vMcCVjpsSuBKusabhWCowGzhRDhZoza3LBTWkLbSWgLIXlYHUudNu2UmkNQuzyMWHnv8a7EDza-tt3x8b_1gzqwUo9WKkHK_XFSto8nTcdIv73C10yXaj8D_oPXhk</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Long Chen</creator><creator>Lei Fan</creator><creator>Guodong Xie</creator><creator>Kai Huang</creator><creator>Nuchter, Andreas</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0359-7810</orcidid><orcidid>https://orcid.org/0000-0003-4925-0572</orcidid></search><sort><creationdate>201711</creationdate><title>Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing</title><author>Long Chen ; Lei Fan ; Guodong Xie ; Kai Huang ; Nuchter, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-64d90f6fca28660c802161e6e821fc342c9f78f50e594f20f8348bbb5688044d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>autonomous vehicles</topic><topic>Cameras</topic><topic>Graphics processing units</topic><topic>Image segmentation</topic><topic>Motion segmentation</topic><topic>Optical imaging</topic><topic>simultaneous localization and mapping</topic><topic>Stereo vision</topic><topic>Three-dimensional displays</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long Chen</creatorcontrib><creatorcontrib>Lei Fan</creatorcontrib><creatorcontrib>Guodong Xie</creatorcontrib><creatorcontrib>Kai Huang</creatorcontrib><creatorcontrib>Nuchter, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Long Chen</au><au>Lei Fan</au><au>Guodong Xie</au><au>Kai Huang</au><au>Nuchter, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2017-11</date><risdate>2017</risdate><volume>18</volume><issue>11</issue><spage>3093</spage><epage>3102</epage><pages>3093-3102</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo image pairs on mobile platforms. First, we use a variant of the semi-global matching algorithm to compute initial disparity maps. Second, assisted by the initial disparities, boundaries in the image segmentation produced by simple linear iterative clustering are classified into coplanar, hinge, and occlusion. Moving points are obtained during ego-motion estimation by a modified random sample consensus) algorithm without resorting to time-consuming dense optical flow. Finally, the moving objects are extracted by merging superpixels according to the boundary types and their movements. The proposed method is accelerated on the GPU at 20 frames per second. The data which we use for testing and benchmarking is released, thus completing similar data sets. It includes 812 image pairs and 924 moving objects with ground truth for better algorithms evaluation. Experimental results demonstrate that the proposed method achieves competitive results in terms of moving-object detection and their motion state estimation in challenging urban scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2017.2680538</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0359-7810</orcidid><orcidid>https://orcid.org/0000-0003-4925-0572</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2017-11, Vol.18 (11), p.3093-3102 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2017_2680538 |
source | IEEE Electronic Library (IEL) |
subjects | autonomous vehicles Cameras Graphics processing units Image segmentation Motion segmentation Optical imaging simultaneous localization and mapping Stereo vision Three-dimensional displays Vehicle dynamics |
title | Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving-Object%20Detection%20From%20Consecutive%20Stereo%20Pairs%20Using%20Slanted%20Plane%20Smoothing&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Long%20Chen&rft.date=2017-11&rft.volume=18&rft.issue=11&rft.spage=3093&rft.epage=3102&rft.pages=3093-3102&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2680538&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2017_2680538%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7891876&rfr_iscdi=true |