Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing

Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2017-11, Vol.18 (11), p.3093-3102
Hauptverfasser: Long Chen, Lei Fan, Guodong Xie, Kai Huang, Nuchter, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3102
container_issue 11
container_start_page 3093
container_title IEEE transactions on intelligent transportation systems
container_volume 18
creator Long Chen
Lei Fan
Guodong Xie
Kai Huang
Nuchter, Andreas
description Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo image pairs on mobile platforms. First, we use a variant of the semi-global matching algorithm to compute initial disparity maps. Second, assisted by the initial disparities, boundaries in the image segmentation produced by simple linear iterative clustering are classified into coplanar, hinge, and occlusion. Moving points are obtained during ego-motion estimation by a modified random sample consensus) algorithm without resorting to time-consuming dense optical flow. Finally, the moving objects are extracted by merging superpixels according to the boundary types and their movements. The proposed method is accelerated on the GPU at 20 frames per second. The data which we use for testing and benchmarking is released, thus completing similar data sets. It includes 812 image pairs and 924 moving objects with ground truth for better algorithms evaluation. Experimental results demonstrate that the proposed method achieves competitive results in terms of moving-object detection and their motion state estimation in challenging urban scenarios.
doi_str_mv 10.1109/TITS.2017.2680538
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2017_2680538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7891876</ieee_id><sourcerecordid>10_1109_TITS_2017_2680538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-64d90f6fca28660c802161e6e821fc342c9f78f50e594f20f8348bbb5688044d3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN7kBTpP0iRNL2W6OZhs0O26tNmJdmyNJHHg25uy4dV3-Pn_c_ER8shgwhiUz5vFpppwYMWEKw0y11dkxKTUGQBT18PNRVaChFtyF8I-pUIyNiLVhzt1_We2avdoIn3FmNC5ns68O9Kp6wOan9idkFYRPTq6bjof6DakEa0OTR9xR9eJqXB0Ln6l_J7c2OYQ8OHCMdnO3jbT92y5mi-mL8vMcCVjpsSuBKusabhWCowGzhRDhZoza3LBTWkLbSWgLIXlYHUudNu2UmkNQuzyMWHnv8a7EDza-tt3x8b_1gzqwUo9WKkHK_XFSto8nTcdIv73C10yXaj8D_oPXhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing</title><source>IEEE Electronic Library (IEL)</source><creator>Long Chen ; Lei Fan ; Guodong Xie ; Kai Huang ; Nuchter, Andreas</creator><creatorcontrib>Long Chen ; Lei Fan ; Guodong Xie ; Kai Huang ; Nuchter, Andreas</creatorcontrib><description>Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo image pairs on mobile platforms. First, we use a variant of the semi-global matching algorithm to compute initial disparity maps. Second, assisted by the initial disparities, boundaries in the image segmentation produced by simple linear iterative clustering are classified into coplanar, hinge, and occlusion. Moving points are obtained during ego-motion estimation by a modified random sample consensus) algorithm without resorting to time-consuming dense optical flow. Finally, the moving objects are extracted by merging superpixels according to the boundary types and their movements. The proposed method is accelerated on the GPU at 20 frames per second. The data which we use for testing and benchmarking is released, thus completing similar data sets. It includes 812 image pairs and 924 moving objects with ground truth for better algorithms evaluation. Experimental results demonstrate that the proposed method achieves competitive results in terms of moving-object detection and their motion state estimation in challenging urban scenarios.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2680538</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>autonomous vehicles ; Cameras ; Graphics processing units ; Image segmentation ; Motion segmentation ; Optical imaging ; simultaneous localization and mapping ; Stereo vision ; Three-dimensional displays ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2017-11, Vol.18 (11), p.3093-3102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-64d90f6fca28660c802161e6e821fc342c9f78f50e594f20f8348bbb5688044d3</citedby><cites>FETCH-LOGICAL-c265t-64d90f6fca28660c802161e6e821fc342c9f78f50e594f20f8348bbb5688044d3</cites><orcidid>0000-0003-0359-7810 ; 0000-0003-4925-0572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7891876$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7891876$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Long Chen</creatorcontrib><creatorcontrib>Lei Fan</creatorcontrib><creatorcontrib>Guodong Xie</creatorcontrib><creatorcontrib>Kai Huang</creatorcontrib><creatorcontrib>Nuchter, Andreas</creatorcontrib><title>Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo image pairs on mobile platforms. First, we use a variant of the semi-global matching algorithm to compute initial disparity maps. Second, assisted by the initial disparities, boundaries in the image segmentation produced by simple linear iterative clustering are classified into coplanar, hinge, and occlusion. Moving points are obtained during ego-motion estimation by a modified random sample consensus) algorithm without resorting to time-consuming dense optical flow. Finally, the moving objects are extracted by merging superpixels according to the boundary types and their movements. The proposed method is accelerated on the GPU at 20 frames per second. The data which we use for testing and benchmarking is released, thus completing similar data sets. It includes 812 image pairs and 924 moving objects with ground truth for better algorithms evaluation. Experimental results demonstrate that the proposed method achieves competitive results in terms of moving-object detection and their motion state estimation in challenging urban scenarios.</description><subject>autonomous vehicles</subject><subject>Cameras</subject><subject>Graphics processing units</subject><subject>Image segmentation</subject><subject>Motion segmentation</subject><subject>Optical imaging</subject><subject>simultaneous localization and mapping</subject><subject>Stereo vision</subject><subject>Three-dimensional displays</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN7kBTpP0iRNL2W6OZhs0O26tNmJdmyNJHHg25uy4dV3-Pn_c_ER8shgwhiUz5vFpppwYMWEKw0y11dkxKTUGQBT18PNRVaChFtyF8I-pUIyNiLVhzt1_We2avdoIn3FmNC5ns68O9Kp6wOan9idkFYRPTq6bjof6DakEa0OTR9xR9eJqXB0Ln6l_J7c2OYQ8OHCMdnO3jbT92y5mi-mL8vMcCVjpsSuBKusabhWCowGzhRDhZoza3LBTWkLbSWgLIXlYHUudNu2UmkNQuzyMWHnv8a7EDza-tt3x8b_1gzqwUo9WKkHK_XFSto8nTcdIv73C10yXaj8D_oPXhk</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Long Chen</creator><creator>Lei Fan</creator><creator>Guodong Xie</creator><creator>Kai Huang</creator><creator>Nuchter, Andreas</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0359-7810</orcidid><orcidid>https://orcid.org/0000-0003-4925-0572</orcidid></search><sort><creationdate>201711</creationdate><title>Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing</title><author>Long Chen ; Lei Fan ; Guodong Xie ; Kai Huang ; Nuchter, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-64d90f6fca28660c802161e6e821fc342c9f78f50e594f20f8348bbb5688044d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>autonomous vehicles</topic><topic>Cameras</topic><topic>Graphics processing units</topic><topic>Image segmentation</topic><topic>Motion segmentation</topic><topic>Optical imaging</topic><topic>simultaneous localization and mapping</topic><topic>Stereo vision</topic><topic>Three-dimensional displays</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long Chen</creatorcontrib><creatorcontrib>Lei Fan</creatorcontrib><creatorcontrib>Guodong Xie</creatorcontrib><creatorcontrib>Kai Huang</creatorcontrib><creatorcontrib>Nuchter, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Long Chen</au><au>Lei Fan</au><au>Guodong Xie</au><au>Kai Huang</au><au>Nuchter, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2017-11</date><risdate>2017</risdate><volume>18</volume><issue>11</issue><spage>3093</spage><epage>3102</epage><pages>3093-3102</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Detecting moving objects is of great importance for autonomous unmanned vehicle systems, and a challenging task especially in complex dynamic environments. This paper proposes a novel approach for the detection of moving objects and the estimation of their motion states using consecutive stereo image pairs on mobile platforms. First, we use a variant of the semi-global matching algorithm to compute initial disparity maps. Second, assisted by the initial disparities, boundaries in the image segmentation produced by simple linear iterative clustering are classified into coplanar, hinge, and occlusion. Moving points are obtained during ego-motion estimation by a modified random sample consensus) algorithm without resorting to time-consuming dense optical flow. Finally, the moving objects are extracted by merging superpixels according to the boundary types and their movements. The proposed method is accelerated on the GPU at 20 frames per second. The data which we use for testing and benchmarking is released, thus completing similar data sets. It includes 812 image pairs and 924 moving objects with ground truth for better algorithms evaluation. Experimental results demonstrate that the proposed method achieves competitive results in terms of moving-object detection and their motion state estimation in challenging urban scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2017.2680538</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0359-7810</orcidid><orcidid>https://orcid.org/0000-0003-4925-0572</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2017-11, Vol.18 (11), p.3093-3102
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2017_2680538
source IEEE Electronic Library (IEL)
subjects autonomous vehicles
Cameras
Graphics processing units
Image segmentation
Motion segmentation
Optical imaging
simultaneous localization and mapping
Stereo vision
Three-dimensional displays
Vehicle dynamics
title Moving-Object Detection From Consecutive Stereo Pairs Using Slanted Plane Smoothing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving-Object%20Detection%20From%20Consecutive%20Stereo%20Pairs%20Using%20Slanted%20Plane%20Smoothing&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Long%20Chen&rft.date=2017-11&rft.volume=18&rft.issue=11&rft.spage=3093&rft.epage=3102&rft.pages=3093-3102&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2680538&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2017_2680538%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7891876&rfr_iscdi=true