Spatio-Temporal Analysis of Passenger Travel Patterns in Massive Smart Card Data

Metro systems have become one of the most important public transit services in cities. It is important to understand individual metro passengers' spatio-temporal travel patterns. More specifically, for a specific passenger: what are the temporal patterns? what are the spatial patterns? is there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2017-11, Vol.18 (11), p.3135-3146
Hauptverfasser: Zhao, Juanjuan, Qu, Qiang, Zhang, Fan, Xu, Chengzhong, Liu, Siyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3146
container_issue 11
container_start_page 3135
container_title IEEE transactions on intelligent transportation systems
container_volume 18
creator Zhao, Juanjuan
Qu, Qiang
Zhang, Fan
Xu, Chengzhong
Liu, Siyuan
description Metro systems have become one of the most important public transit services in cities. It is important to understand individual metro passengers' spatio-temporal travel patterns. More specifically, for a specific passenger: what are the temporal patterns? what are the spatial patterns? is there any relationship between the temporal and spatial patterns? are the passenger's travel patterns normal or special? Answering all these questions can help to improve metro services, such as evacuation policy making and marketing. Given a set of massive smart card data over a long period, how to effectively and systematically identify and understand the travel patterns of individual passengers in terms of space and time is a very challenging task. This paper proposes an effective data-mining procedure to better understand the travel patterns of individual metro passengers in Shenzhen, a modern and big city in China. First, we investigate the travel patterns in individual level and devise the method to retrieve them based on raw smart card transaction data, then use statistical-based and unsupervised clustering-based methods, to understand the hidden regularities and anomalies of the travel patterns. From a statistical-based point of view, we look into the passenger travel distribution patterns and find out the abnormal passengers based on the empirical knowledge. From unsupervised clustering point of view, we classify passengers in terms of the similarity of their travel patterns. To interpret the group behaviors, we also employ the bus transaction data. Moreover, the abnormal passengers are detected based on the clustering results. At last, we provide case studies and findings to demonstrate the effectiveness of the proposed scheme.
doi_str_mv 10.1109/TITS.2017.2679179
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2017_2679179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7891954</ieee_id><sourcerecordid>10_1109_TITS_2017_2679179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-659536a574a52f44ab3c5578de761a11e05a3faf4f8fe308d19f67aeb0b570c93</originalsourceid><addsrcrecordid>eNo9kN1qwzAMRs3YYF23Bxi78QuksxIrji9L9lfoWKHZdVATeWSkSbFDoW-_hJZdSXzSEeII8QhqAaDsc7EqtotYgVnEqbFg7JWYAWIWKQXp9dTHOrIK1a24C-F3TDUCzMRme6Ch6aOC94feUyuXHbWn0ATZO7mhELj7YS8LT0dux2AY2HdBNp38HIfNkeV2T36QOflavtBA9-LGURv44VLn4vvttcg_ovXX-ypfrqMqUdkQpWgxSQmNJoyd1rRLKkST1WxSIABWSIkjp13meCRqsC41xDu1Q6Mqm8wFnO9Wvg_BsysPvhlfOZWgyklJOSkpJyXlRcnIPJ2Zhpn_901mwaJO_gC-Nl1m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatio-Temporal Analysis of Passenger Travel Patterns in Massive Smart Card Data</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Juanjuan ; Qu, Qiang ; Zhang, Fan ; Xu, Chengzhong ; Liu, Siyuan</creator><creatorcontrib>Zhao, Juanjuan ; Qu, Qiang ; Zhang, Fan ; Xu, Chengzhong ; Liu, Siyuan</creatorcontrib><description>Metro systems have become one of the most important public transit services in cities. It is important to understand individual metro passengers' spatio-temporal travel patterns. More specifically, for a specific passenger: what are the temporal patterns? what are the spatial patterns? is there any relationship between the temporal and spatial patterns? are the passenger's travel patterns normal or special? Answering all these questions can help to improve metro services, such as evacuation policy making and marketing. Given a set of massive smart card data over a long period, how to effectively and systematically identify and understand the travel patterns of individual passengers in terms of space and time is a very challenging task. This paper proposes an effective data-mining procedure to better understand the travel patterns of individual metro passengers in Shenzhen, a modern and big city in China. First, we investigate the travel patterns in individual level and devise the method to retrieve them based on raw smart card transaction data, then use statistical-based and unsupervised clustering-based methods, to understand the hidden regularities and anomalies of the travel patterns. From a statistical-based point of view, we look into the passenger travel distribution patterns and find out the abnormal passengers based on the empirical knowledge. From unsupervised clustering point of view, we classify passengers in terms of the similarity of their travel patterns. To interpret the group behaviors, we also employ the bus transaction data. Moreover, the abnormal passengers are detected based on the clustering results. At last, we provide case studies and findings to demonstrate the effectiveness of the proposed scheme.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2679179</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Companies ; Data mining ; Global Positioning System ; metro system ; Passenger behavior analysis ; smart card data ; Smart cards ; Space exploration ; spatio-temporal analysis ; Transportation ; Urban areas</subject><ispartof>IEEE transactions on intelligent transportation systems, 2017-11, Vol.18 (11), p.3135-3146</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-659536a574a52f44ab3c5578de761a11e05a3faf4f8fe308d19f67aeb0b570c93</citedby><cites>FETCH-LOGICAL-c308t-659536a574a52f44ab3c5578de761a11e05a3faf4f8fe308d19f67aeb0b570c93</cites><orcidid>0000-0001-5814-8460 ; 0000-0003-1002-9272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7891954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7891954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Juanjuan</creatorcontrib><creatorcontrib>Qu, Qiang</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xu, Chengzhong</creatorcontrib><creatorcontrib>Liu, Siyuan</creatorcontrib><title>Spatio-Temporal Analysis of Passenger Travel Patterns in Massive Smart Card Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Metro systems have become one of the most important public transit services in cities. It is important to understand individual metro passengers' spatio-temporal travel patterns. More specifically, for a specific passenger: what are the temporal patterns? what are the spatial patterns? is there any relationship between the temporal and spatial patterns? are the passenger's travel patterns normal or special? Answering all these questions can help to improve metro services, such as evacuation policy making and marketing. Given a set of massive smart card data over a long period, how to effectively and systematically identify and understand the travel patterns of individual passengers in terms of space and time is a very challenging task. This paper proposes an effective data-mining procedure to better understand the travel patterns of individual metro passengers in Shenzhen, a modern and big city in China. First, we investigate the travel patterns in individual level and devise the method to retrieve them based on raw smart card transaction data, then use statistical-based and unsupervised clustering-based methods, to understand the hidden regularities and anomalies of the travel patterns. From a statistical-based point of view, we look into the passenger travel distribution patterns and find out the abnormal passengers based on the empirical knowledge. From unsupervised clustering point of view, we classify passengers in terms of the similarity of their travel patterns. To interpret the group behaviors, we also employ the bus transaction data. Moreover, the abnormal passengers are detected based on the clustering results. At last, we provide case studies and findings to demonstrate the effectiveness of the proposed scheme.</description><subject>Companies</subject><subject>Data mining</subject><subject>Global Positioning System</subject><subject>metro system</subject><subject>Passenger behavior analysis</subject><subject>smart card data</subject><subject>Smart cards</subject><subject>Space exploration</subject><subject>spatio-temporal analysis</subject><subject>Transportation</subject><subject>Urban areas</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1qwzAMRs3YYF23Bxi78QuksxIrji9L9lfoWKHZdVATeWSkSbFDoW-_hJZdSXzSEeII8QhqAaDsc7EqtotYgVnEqbFg7JWYAWIWKQXp9dTHOrIK1a24C-F3TDUCzMRme6Ch6aOC94feUyuXHbWn0ATZO7mhELj7YS8LT0dux2AY2HdBNp38HIfNkeV2T36QOflavtBA9-LGURv44VLn4vvttcg_ovXX-ypfrqMqUdkQpWgxSQmNJoyd1rRLKkST1WxSIABWSIkjp13meCRqsC41xDu1Q6Mqm8wFnO9Wvg_BsysPvhlfOZWgyklJOSkpJyXlRcnIPJ2Zhpn_901mwaJO_gC-Nl1m</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Zhao, Juanjuan</creator><creator>Qu, Qiang</creator><creator>Zhang, Fan</creator><creator>Xu, Chengzhong</creator><creator>Liu, Siyuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5814-8460</orcidid><orcidid>https://orcid.org/0000-0003-1002-9272</orcidid></search><sort><creationdate>201711</creationdate><title>Spatio-Temporal Analysis of Passenger Travel Patterns in Massive Smart Card Data</title><author>Zhao, Juanjuan ; Qu, Qiang ; Zhang, Fan ; Xu, Chengzhong ; Liu, Siyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-659536a574a52f44ab3c5578de761a11e05a3faf4f8fe308d19f67aeb0b570c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Companies</topic><topic>Data mining</topic><topic>Global Positioning System</topic><topic>metro system</topic><topic>Passenger behavior analysis</topic><topic>smart card data</topic><topic>Smart cards</topic><topic>Space exploration</topic><topic>spatio-temporal analysis</topic><topic>Transportation</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Juanjuan</creatorcontrib><creatorcontrib>Qu, Qiang</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Xu, Chengzhong</creatorcontrib><creatorcontrib>Liu, Siyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Juanjuan</au><au>Qu, Qiang</au><au>Zhang, Fan</au><au>Xu, Chengzhong</au><au>Liu, Siyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-Temporal Analysis of Passenger Travel Patterns in Massive Smart Card Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2017-11</date><risdate>2017</risdate><volume>18</volume><issue>11</issue><spage>3135</spage><epage>3146</epage><pages>3135-3146</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Metro systems have become one of the most important public transit services in cities. It is important to understand individual metro passengers' spatio-temporal travel patterns. More specifically, for a specific passenger: what are the temporal patterns? what are the spatial patterns? is there any relationship between the temporal and spatial patterns? are the passenger's travel patterns normal or special? Answering all these questions can help to improve metro services, such as evacuation policy making and marketing. Given a set of massive smart card data over a long period, how to effectively and systematically identify and understand the travel patterns of individual passengers in terms of space and time is a very challenging task. This paper proposes an effective data-mining procedure to better understand the travel patterns of individual metro passengers in Shenzhen, a modern and big city in China. First, we investigate the travel patterns in individual level and devise the method to retrieve them based on raw smart card transaction data, then use statistical-based and unsupervised clustering-based methods, to understand the hidden regularities and anomalies of the travel patterns. From a statistical-based point of view, we look into the passenger travel distribution patterns and find out the abnormal passengers based on the empirical knowledge. From unsupervised clustering point of view, we classify passengers in terms of the similarity of their travel patterns. To interpret the group behaviors, we also employ the bus transaction data. Moreover, the abnormal passengers are detected based on the clustering results. At last, we provide case studies and findings to demonstrate the effectiveness of the proposed scheme.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2017.2679179</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5814-8460</orcidid><orcidid>https://orcid.org/0000-0003-1002-9272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2017-11, Vol.18 (11), p.3135-3146
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2017_2679179
source IEEE Electronic Library (IEL)
subjects Companies
Data mining
Global Positioning System
metro system
Passenger behavior analysis
smart card data
Smart cards
Space exploration
spatio-temporal analysis
Transportation
Urban areas
title Spatio-Temporal Analysis of Passenger Travel Patterns in Massive Smart Card Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T07%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-Temporal%20Analysis%20of%20Passenger%20Travel%20Patterns%20in%20Massive%20Smart%20Card%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Zhao,%20Juanjuan&rft.date=2017-11&rft.volume=18&rft.issue=11&rft.spage=3135&rft.epage=3146&rft.pages=3135-3146&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2679179&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2017_2679179%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7891954&rfr_iscdi=true