Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill

Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2015-02, Vol.16 (1), p.365-375
Hauptverfasser: Qu, Ting, Chen, Hong, Cao, Dongpu, Guo, Hongyan, Gao, Bingzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 1
container_start_page 365
container_title IEEE transactions on intelligent transportation systems
container_volume 16
creator Qu, Ting
Chen, Hong
Cao, Dongpu
Guo, Hongyan
Gao, Bingzhao
description Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties or statistical properties of the vehicle-road system. In this paper, a stochastic model predictive control (SMPC) approach is proposed to model the driver steering skill, which effectively incorporates the random variations in the road friction and roughness, a multipoint preview approach, and a piecewise affine (PWA) model structure that are developed to mimic the driver's perception of the desired path and the nonlinear internal vehicle dynamics. The SMPC method is then used to generate a steering command by minimization of a cost function, including the lateral path error and ease of driver control. In the analyses, first, the experimental data of Hongqi HQ430 are used to validate the driver steering skill controller. Then, the parametric studies of control performance during a nonlinear steering maneuver are provided. Finally, further discussions about the driver's adaption and the indication on vehicle dynamics tuning are given. The proposed switching-based SMPC driver steering control framework offers a new approach for driver behavior modeling.
doi_str_mv 10.1109/TITS.2014.2334623
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2014_2334623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6862053</ieee_id><sourcerecordid>10_1109_TITS_2014_2334623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5571f9e696e4b575ce817d5c91ff77c7b8053ef59deb8e05bef157e9b3045c0b3</originalsourceid><addsrcrecordid>eNo9kN1KwzAUx4MoOKcPIN7kBTpzmqRpLud0OpgodF6HNj1x0bqMpCi-vS0bXp0P_h_wI-Qa2AyA6dvNalPNcgZilnMuipyfkAlIWWaMQXE67rnINJPsnFyk9DF8hQSYEFP9-N5u_e49u6sTtrTqg93WqfeWPocWO_oasfW2999IF2HXx9DR-X4fQ2231IV4UA1-eh8HTRwCEON4V5--6y7Jmau7hFfHOSVvy4fN4ilbvzyuFvN1ZgWDPpNSgdNY6AJFI5W0WIJqpdXgnFJWNSWTHJ3ULTYlMtmgA6lQN5wJaVnDpwQOuTaGlCI6s4_-q46_BpgZCZmRkBkJmSOhwXNz8HhE_NcXZZEPZfwP0oVjgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill</title><source>IEEE Electronic Library (IEL)</source><creator>Qu, Ting ; Chen, Hong ; Cao, Dongpu ; Guo, Hongyan ; Gao, Bingzhao</creator><creatorcontrib>Qu, Ting ; Chen, Hong ; Cao, Dongpu ; Guo, Hongyan ; Gao, Bingzhao</creatorcontrib><description>Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties or statistical properties of the vehicle-road system. In this paper, a stochastic model predictive control (SMPC) approach is proposed to model the driver steering skill, which effectively incorporates the random variations in the road friction and roughness, a multipoint preview approach, and a piecewise affine (PWA) model structure that are developed to mimic the driver's perception of the desired path and the nonlinear internal vehicle dynamics. The SMPC method is then used to generate a steering command by minimization of a cost function, including the lateral path error and ease of driver control. In the analyses, first, the experimental data of Hongqi HQ430 are used to validate the driver steering skill controller. Then, the parametric studies of control performance during a nonlinear steering maneuver are provided. Finally, further discussions about the driver's adaption and the indication on vehicle dynamics tuning are given. The proposed switching-based SMPC driver steering control framework offers a new approach for driver behavior modeling.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2014.2334623</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Driver modeling ; driver steering skill ; Force ; Mathematical model ; piecewise affine (PWA) internal vehicle dynamics ; Predictive models ; road roughness and friction variations ; Roads ; stochastic model predictive control (SMPC) ; Tires ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2015-02, Vol.16 (1), p.365-375</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5571f9e696e4b575ce817d5c91ff77c7b8053ef59deb8e05bef157e9b3045c0b3</citedby><cites>FETCH-LOGICAL-c401t-5571f9e696e4b575ce817d5c91ff77c7b8053ef59deb8e05bef157e9b3045c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6862053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6862053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qu, Ting</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Cao, Dongpu</creatorcontrib><creatorcontrib>Guo, Hongyan</creatorcontrib><creatorcontrib>Gao, Bingzhao</creatorcontrib><title>Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties or statistical properties of the vehicle-road system. In this paper, a stochastic model predictive control (SMPC) approach is proposed to model the driver steering skill, which effectively incorporates the random variations in the road friction and roughness, a multipoint preview approach, and a piecewise affine (PWA) model structure that are developed to mimic the driver's perception of the desired path and the nonlinear internal vehicle dynamics. The SMPC method is then used to generate a steering command by minimization of a cost function, including the lateral path error and ease of driver control. In the analyses, first, the experimental data of Hongqi HQ430 are used to validate the driver steering skill controller. Then, the parametric studies of control performance during a nonlinear steering maneuver are provided. Finally, further discussions about the driver's adaption and the indication on vehicle dynamics tuning are given. The proposed switching-based SMPC driver steering control framework offers a new approach for driver behavior modeling.</description><subject>Driver modeling</subject><subject>driver steering skill</subject><subject>Force</subject><subject>Mathematical model</subject><subject>piecewise affine (PWA) internal vehicle dynamics</subject><subject>Predictive models</subject><subject>road roughness and friction variations</subject><subject>Roads</subject><subject>stochastic model predictive control (SMPC)</subject><subject>Tires</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1KwzAUx4MoOKcPIN7kBTpzmqRpLud0OpgodF6HNj1x0bqMpCi-vS0bXp0P_h_wI-Qa2AyA6dvNalPNcgZilnMuipyfkAlIWWaMQXE67rnINJPsnFyk9DF8hQSYEFP9-N5u_e49u6sTtrTqg93WqfeWPocWO_oasfW2999IF2HXx9DR-X4fQ2231IV4UA1-eh8HTRwCEON4V5--6y7Jmau7hFfHOSVvy4fN4ilbvzyuFvN1ZgWDPpNSgdNY6AJFI5W0WIJqpdXgnFJWNSWTHJ3ULTYlMtmgA6lQN5wJaVnDpwQOuTaGlCI6s4_-q46_BpgZCZmRkBkJmSOhwXNz8HhE_NcXZZEPZfwP0oVjgA</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Qu, Ting</creator><creator>Chen, Hong</creator><creator>Cao, Dongpu</creator><creator>Guo, Hongyan</creator><creator>Gao, Bingzhao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150201</creationdate><title>Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill</title><author>Qu, Ting ; Chen, Hong ; Cao, Dongpu ; Guo, Hongyan ; Gao, Bingzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5571f9e696e4b575ce817d5c91ff77c7b8053ef59deb8e05bef157e9b3045c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Driver modeling</topic><topic>driver steering skill</topic><topic>Force</topic><topic>Mathematical model</topic><topic>piecewise affine (PWA) internal vehicle dynamics</topic><topic>Predictive models</topic><topic>road roughness and friction variations</topic><topic>Roads</topic><topic>stochastic model predictive control (SMPC)</topic><topic>Tires</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Ting</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Cao, Dongpu</creatorcontrib><creatorcontrib>Guo, Hongyan</creatorcontrib><creatorcontrib>Gao, Bingzhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qu, Ting</au><au>Chen, Hong</au><au>Cao, Dongpu</au><au>Guo, Hongyan</au><au>Gao, Bingzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>16</volume><issue>1</issue><spage>365</spage><epage>375</epage><pages>365-375</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties or statistical properties of the vehicle-road system. In this paper, a stochastic model predictive control (SMPC) approach is proposed to model the driver steering skill, which effectively incorporates the random variations in the road friction and roughness, a multipoint preview approach, and a piecewise affine (PWA) model structure that are developed to mimic the driver's perception of the desired path and the nonlinear internal vehicle dynamics. The SMPC method is then used to generate a steering command by minimization of a cost function, including the lateral path error and ease of driver control. In the analyses, first, the experimental data of Hongqi HQ430 are used to validate the driver steering skill controller. Then, the parametric studies of control performance during a nonlinear steering maneuver are provided. Finally, further discussions about the driver's adaption and the indication on vehicle dynamics tuning are given. The proposed switching-based SMPC driver steering control framework offers a new approach for driver behavior modeling.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2014.2334623</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2015-02, Vol.16 (1), p.365-375
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2014_2334623
source IEEE Electronic Library (IEL)
subjects Driver modeling
driver steering skill
Force
Mathematical model
piecewise affine (PWA) internal vehicle dynamics
Predictive models
road roughness and friction variations
Roads
stochastic model predictive control (SMPC)
Tires
Vehicle dynamics
Vehicles
title Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switching-Based%20Stochastic%20Model%20Predictive%20Control%20Approach%20for%20Modeling%20Driver%20Steering%20Skill&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Qu,%20Ting&rft.date=2015-02-01&rft.volume=16&rft.issue=1&rft.spage=365&rft.epage=375&rft.pages=365-375&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2014.2334623&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2014_2334623%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6862053&rfr_iscdi=true