Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill
Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2015-02, Vol.16 (1), p.365-375 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 1 |
container_start_page | 365 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 16 |
creator | Qu, Ting Chen, Hong Cao, Dongpu Guo, Hongyan Gao, Bingzhao |
description | Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties or statistical properties of the vehicle-road system. In this paper, a stochastic model predictive control (SMPC) approach is proposed to model the driver steering skill, which effectively incorporates the random variations in the road friction and roughness, a multipoint preview approach, and a piecewise affine (PWA) model structure that are developed to mimic the driver's perception of the desired path and the nonlinear internal vehicle dynamics. The SMPC method is then used to generate a steering command by minimization of a cost function, including the lateral path error and ease of driver control. In the analyses, first, the experimental data of Hongqi HQ430 are used to validate the driver steering skill controller. Then, the parametric studies of control performance during a nonlinear steering maneuver are provided. Finally, further discussions about the driver's adaption and the indication on vehicle dynamics tuning are given. The proposed switching-based SMPC driver steering control framework offers a new approach for driver behavior modeling. |
doi_str_mv | 10.1109/TITS.2014.2334623 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2014_2334623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6862053</ieee_id><sourcerecordid>10_1109_TITS_2014_2334623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-5571f9e696e4b575ce817d5c91ff77c7b8053ef59deb8e05bef157e9b3045c0b3</originalsourceid><addsrcrecordid>eNo9kN1KwzAUx4MoOKcPIN7kBTpzmqRpLud0OpgodF6HNj1x0bqMpCi-vS0bXp0P_h_wI-Qa2AyA6dvNalPNcgZilnMuipyfkAlIWWaMQXE67rnINJPsnFyk9DF8hQSYEFP9-N5u_e49u6sTtrTqg93WqfeWPocWO_oasfW2999IF2HXx9DR-X4fQ2231IV4UA1-eh8HTRwCEON4V5--6y7Jmau7hFfHOSVvy4fN4ilbvzyuFvN1ZgWDPpNSgdNY6AJFI5W0WIJqpdXgnFJWNSWTHJ3ULTYlMtmgA6lQN5wJaVnDpwQOuTaGlCI6s4_-q46_BpgZCZmRkBkJmSOhwXNz8HhE_NcXZZEPZfwP0oVjgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill</title><source>IEEE Electronic Library (IEL)</source><creator>Qu, Ting ; Chen, Hong ; Cao, Dongpu ; Guo, Hongyan ; Gao, Bingzhao</creator><creatorcontrib>Qu, Ting ; Chen, Hong ; Cao, Dongpu ; Guo, Hongyan ; Gao, Bingzhao</creatorcontrib><description>Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties or statistical properties of the vehicle-road system. In this paper, a stochastic model predictive control (SMPC) approach is proposed to model the driver steering skill, which effectively incorporates the random variations in the road friction and roughness, a multipoint preview approach, and a piecewise affine (PWA) model structure that are developed to mimic the driver's perception of the desired path and the nonlinear internal vehicle dynamics. The SMPC method is then used to generate a steering command by minimization of a cost function, including the lateral path error and ease of driver control. In the analyses, first, the experimental data of Hongqi HQ430 are used to validate the driver steering skill controller. Then, the parametric studies of control performance during a nonlinear steering maneuver are provided. Finally, further discussions about the driver's adaption and the indication on vehicle dynamics tuning are given. The proposed switching-based SMPC driver steering control framework offers a new approach for driver behavior modeling.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2014.2334623</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Driver modeling ; driver steering skill ; Force ; Mathematical model ; piecewise affine (PWA) internal vehicle dynamics ; Predictive models ; road roughness and friction variations ; Roads ; stochastic model predictive control (SMPC) ; Tires ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2015-02, Vol.16 (1), p.365-375</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-5571f9e696e4b575ce817d5c91ff77c7b8053ef59deb8e05bef157e9b3045c0b3</citedby><cites>FETCH-LOGICAL-c401t-5571f9e696e4b575ce817d5c91ff77c7b8053ef59deb8e05bef157e9b3045c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6862053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6862053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qu, Ting</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Cao, Dongpu</creatorcontrib><creatorcontrib>Guo, Hongyan</creatorcontrib><creatorcontrib>Gao, Bingzhao</creatorcontrib><title>Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties or statistical properties of the vehicle-road system. In this paper, a stochastic model predictive control (SMPC) approach is proposed to model the driver steering skill, which effectively incorporates the random variations in the road friction and roughness, a multipoint preview approach, and a piecewise affine (PWA) model structure that are developed to mimic the driver's perception of the desired path and the nonlinear internal vehicle dynamics. The SMPC method is then used to generate a steering command by minimization of a cost function, including the lateral path error and ease of driver control. In the analyses, first, the experimental data of Hongqi HQ430 are used to validate the driver steering skill controller. Then, the parametric studies of control performance during a nonlinear steering maneuver are provided. Finally, further discussions about the driver's adaption and the indication on vehicle dynamics tuning are given. The proposed switching-based SMPC driver steering control framework offers a new approach for driver behavior modeling.</description><subject>Driver modeling</subject><subject>driver steering skill</subject><subject>Force</subject><subject>Mathematical model</subject><subject>piecewise affine (PWA) internal vehicle dynamics</subject><subject>Predictive models</subject><subject>road roughness and friction variations</subject><subject>Roads</subject><subject>stochastic model predictive control (SMPC)</subject><subject>Tires</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1KwzAUx4MoOKcPIN7kBTpzmqRpLud0OpgodF6HNj1x0bqMpCi-vS0bXp0P_h_wI-Qa2AyA6dvNalPNcgZilnMuipyfkAlIWWaMQXE67rnINJPsnFyk9DF8hQSYEFP9-N5u_e49u6sTtrTqg93WqfeWPocWO_oasfW2999IF2HXx9DR-X4fQ2231IV4UA1-eh8HTRwCEON4V5--6y7Jmau7hFfHOSVvy4fN4ilbvzyuFvN1ZgWDPpNSgdNY6AJFI5W0WIJqpdXgnFJWNSWTHJ3ULTYlMtmgA6lQN5wJaVnDpwQOuTaGlCI6s4_-q46_BpgZCZmRkBkJmSOhwXNz8HhE_NcXZZEPZfwP0oVjgA</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Qu, Ting</creator><creator>Chen, Hong</creator><creator>Cao, Dongpu</creator><creator>Guo, Hongyan</creator><creator>Gao, Bingzhao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150201</creationdate><title>Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill</title><author>Qu, Ting ; Chen, Hong ; Cao, Dongpu ; Guo, Hongyan ; Gao, Bingzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-5571f9e696e4b575ce817d5c91ff77c7b8053ef59deb8e05bef157e9b3045c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Driver modeling</topic><topic>driver steering skill</topic><topic>Force</topic><topic>Mathematical model</topic><topic>piecewise affine (PWA) internal vehicle dynamics</topic><topic>Predictive models</topic><topic>road roughness and friction variations</topic><topic>Roads</topic><topic>stochastic model predictive control (SMPC)</topic><topic>Tires</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Ting</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Cao, Dongpu</creatorcontrib><creatorcontrib>Guo, Hongyan</creatorcontrib><creatorcontrib>Gao, Bingzhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qu, Ting</au><au>Chen, Hong</au><au>Cao, Dongpu</au><au>Guo, Hongyan</au><au>Gao, Bingzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>16</volume><issue>1</issue><spage>365</spage><epage>375</epage><pages>365-375</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Great advances in simulation-based vehicle system design and development of various driver assistance systems have enhanced the research on improved modeling of driver steering skills. However, little effort has been made on developing driver steering skill models while capturing the uncertainties or statistical properties of the vehicle-road system. In this paper, a stochastic model predictive control (SMPC) approach is proposed to model the driver steering skill, which effectively incorporates the random variations in the road friction and roughness, a multipoint preview approach, and a piecewise affine (PWA) model structure that are developed to mimic the driver's perception of the desired path and the nonlinear internal vehicle dynamics. The SMPC method is then used to generate a steering command by minimization of a cost function, including the lateral path error and ease of driver control. In the analyses, first, the experimental data of Hongqi HQ430 are used to validate the driver steering skill controller. Then, the parametric studies of control performance during a nonlinear steering maneuver are provided. Finally, further discussions about the driver's adaption and the indication on vehicle dynamics tuning are given. The proposed switching-based SMPC driver steering control framework offers a new approach for driver behavior modeling.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2014.2334623</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2015-02, Vol.16 (1), p.365-375 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2014_2334623 |
source | IEEE Electronic Library (IEL) |
subjects | Driver modeling driver steering skill Force Mathematical model piecewise affine (PWA) internal vehicle dynamics Predictive models road roughness and friction variations Roads stochastic model predictive control (SMPC) Tires Vehicle dynamics Vehicles |
title | Switching-Based Stochastic Model Predictive Control Approach for Modeling Driver Steering Skill |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switching-Based%20Stochastic%20Model%20Predictive%20Control%20Approach%20for%20Modeling%20Driver%20Steering%20Skill&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Qu,%20Ting&rft.date=2015-02-01&rft.volume=16&rft.issue=1&rft.spage=365&rft.epage=375&rft.pages=365-375&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2014.2334623&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2014_2334623%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6862053&rfr_iscdi=true |