A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System

A novel approach for a decision fusion and reasoning system for vision-based traffic sign recognition is presented. This module consists of several steps. In the first stage, a track-based Bayesian fusion scheme is used to fuse the classification results from each frame to obtain a fusion result for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2011-12, Vol.12 (4), p.1126-1134
Hauptverfasser: Meuter, M., Nunn, C., Gormer, S. M., Muller-Schneiders, S., Kummert, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1134
container_issue 4
container_start_page 1126
container_title IEEE transactions on intelligent transportation systems
container_volume 12
creator Meuter, M.
Nunn, C.
Gormer, S. M.
Muller-Schneiders, S.
Kummert, A.
description A novel approach for a decision fusion and reasoning system for vision-based traffic sign recognition is presented. This module consists of several steps. In the first stage, a track-based Bayesian fusion scheme is used to fuse the classification results from each frame to obtain a fusion result for each track to decide whether a sign is present, as well as to determine the sign type. In order to determine the sign type, the temporal fusion scheme has been combined with a decision tree. In the second stage, the system combines and fuses probable identical objects which help to further reduce failures in the recognition process. The decision is based on the fusion results, as well as a position cue. Finally, a reasoning module is used to decide which of the passed signs should be shown to the driver. In addition to these modules, a general evaluation method for multi-class tracking systems is shown. While some failures are observed from the evaluation on object level, the additional post processing steps improve the system in such a way that the finally presented signs are almost always correct on the test set.
doi_str_mv 10.1109/TITS.2011.2157497
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2011_2157497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5910385</ieee_id><sourcerecordid>1671380848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-47b9e03f20aa33d8813a8284c661557b30c1bbc9b96333178280b2466f3545f63</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdRUKs_QLwsguBla2bzscmx1E-oCLaeQzZNSso2qUn34L83a4sHTzPMPO8wPEVxBWgMgMT94nUxH9cIYFwDbYhojoozoJRXCAE7HvqaVAJRdFqcp7TOU0IBzorZpHww2iUXfPnU_xbll-WHUSl451flW1j2nSltiKUqF1FZ63Q5dyufGR1W3u2GzPw77czmojixqkvm8lBHxefT42L6Us3en1-nk1mlSQ27ijStMAjbGimF8ZJzwIrXnGjG8stNi5GGttWiFQxjDE3eobYmjFlMCbUMj4q7_d1tDF-9STu5cUmbrlPehD5JYA1gjjjhGb35h65DH33-TgrEaHYgRIZgD-kYUorGym10GxW_JSA56JWDXjnolQe9OXN7OKySVp2NymeNf8GaYiyIQJm73nPOGPO3pgIQ5hT_AO9igBI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906551199</pqid></control><display><type>article</type><title>A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System</title><source>IEEE Electronic Library (IEL)</source><creator>Meuter, M. ; Nunn, C. ; Gormer, S. M. ; Muller-Schneiders, S. ; Kummert, A.</creator><creatorcontrib>Meuter, M. ; Nunn, C. ; Gormer, S. M. ; Muller-Schneiders, S. ; Kummert, A.</creatorcontrib><description>A novel approach for a decision fusion and reasoning system for vision-based traffic sign recognition is presented. This module consists of several steps. In the first stage, a track-based Bayesian fusion scheme is used to fuse the classification results from each frame to obtain a fusion result for each track to decide whether a sign is present, as well as to determine the sign type. In order to determine the sign type, the temporal fusion scheme has been combined with a decision tree. In the second stage, the system combines and fuses probable identical objects which help to further reduce failures in the recognition process. The decision is based on the fusion results, as well as a position cue. Finally, a reasoning module is used to decide which of the passed signs should be shown to the driver. In addition to these modules, a general evaluation method for multi-class tracking systems is shown. While some failures are observed from the evaluation on object level, the additional post processing steps improve the system in such a way that the finally presented signs are almost always correct on the test set.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2011.2157497</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>Piscataway, NJ: IEEE</publisher><subject>Active safety ; Applied sciences ; Artificial intelligence ; Bayesian methods ; Computer science; control theory; systems ; decision fusion ; Decision theory. Utility theory ; Decision trees ; Drivers ; evaluation ; Exact sciences and technology ; Failure ; Fuses ; Image classification ; image processing ; Modules ; moving host ; Operational research and scientific management ; Operational research. Management science ; Pattern recognition. Digital image processing. Computational geometry ; Reasoning ; Recognition ; Tracking ; traffic sign recognition ; Traffic signs</subject><ispartof>IEEE transactions on intelligent transportation systems, 2011-12, Vol.12 (4), p.1126-1134</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-47b9e03f20aa33d8813a8284c661557b30c1bbc9b96333178280b2466f3545f63</citedby><cites>FETCH-LOGICAL-c421t-47b9e03f20aa33d8813a8284c661557b30c1bbc9b96333178280b2466f3545f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5910385$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5910385$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25339490$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Meuter, M.</creatorcontrib><creatorcontrib>Nunn, C.</creatorcontrib><creatorcontrib>Gormer, S. M.</creatorcontrib><creatorcontrib>Muller-Schneiders, S.</creatorcontrib><creatorcontrib>Kummert, A.</creatorcontrib><title>A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>A novel approach for a decision fusion and reasoning system for vision-based traffic sign recognition is presented. This module consists of several steps. In the first stage, a track-based Bayesian fusion scheme is used to fuse the classification results from each frame to obtain a fusion result for each track to decide whether a sign is present, as well as to determine the sign type. In order to determine the sign type, the temporal fusion scheme has been combined with a decision tree. In the second stage, the system combines and fuses probable identical objects which help to further reduce failures in the recognition process. The decision is based on the fusion results, as well as a position cue. Finally, a reasoning module is used to decide which of the passed signs should be shown to the driver. In addition to these modules, a general evaluation method for multi-class tracking systems is shown. While some failures are observed from the evaluation on object level, the additional post processing steps improve the system in such a way that the finally presented signs are almost always correct on the test set.</description><subject>Active safety</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>decision fusion</subject><subject>Decision theory. Utility theory</subject><subject>Decision trees</subject><subject>Drivers</subject><subject>evaluation</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Fuses</subject><subject>Image classification</subject><subject>image processing</subject><subject>Modules</subject><subject>moving host</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Reasoning</subject><subject>Recognition</subject><subject>Tracking</subject><subject>traffic sign recognition</subject><subject>Traffic signs</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhhdRUKs_QLwsguBla2bzscmx1E-oCLaeQzZNSso2qUn34L83a4sHTzPMPO8wPEVxBWgMgMT94nUxH9cIYFwDbYhojoozoJRXCAE7HvqaVAJRdFqcp7TOU0IBzorZpHww2iUXfPnU_xbll-WHUSl451flW1j2nSltiKUqF1FZ63Q5dyufGR1W3u2GzPw77czmojixqkvm8lBHxefT42L6Us3en1-nk1mlSQ27ijStMAjbGimF8ZJzwIrXnGjG8stNi5GGttWiFQxjDE3eobYmjFlMCbUMj4q7_d1tDF-9STu5cUmbrlPehD5JYA1gjjjhGb35h65DH33-TgrEaHYgRIZgD-kYUorGym10GxW_JSA56JWDXjnolQe9OXN7OKySVp2NymeNf8GaYiyIQJm73nPOGPO3pgIQ5hT_AO9igBI</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Meuter, M.</creator><creator>Nunn, C.</creator><creator>Gormer, S. M.</creator><creator>Muller-Schneiders, S.</creator><creator>Kummert, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20111201</creationdate><title>A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System</title><author>Meuter, M. ; Nunn, C. ; Gormer, S. M. ; Muller-Schneiders, S. ; Kummert, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-47b9e03f20aa33d8813a8284c661557b30c1bbc9b96333178280b2466f3545f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active safety</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>decision fusion</topic><topic>Decision theory. Utility theory</topic><topic>Decision trees</topic><topic>Drivers</topic><topic>evaluation</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Fuses</topic><topic>Image classification</topic><topic>image processing</topic><topic>Modules</topic><topic>moving host</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Reasoning</topic><topic>Recognition</topic><topic>Tracking</topic><topic>traffic sign recognition</topic><topic>Traffic signs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meuter, M.</creatorcontrib><creatorcontrib>Nunn, C.</creatorcontrib><creatorcontrib>Gormer, S. M.</creatorcontrib><creatorcontrib>Muller-Schneiders, S.</creatorcontrib><creatorcontrib>Kummert, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meuter, M.</au><au>Nunn, C.</au><au>Gormer, S. M.</au><au>Muller-Schneiders, S.</au><au>Kummert, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2011-12-01</date><risdate>2011</risdate><volume>12</volume><issue>4</issue><spage>1126</spage><epage>1134</epage><pages>1126-1134</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>A novel approach for a decision fusion and reasoning system for vision-based traffic sign recognition is presented. This module consists of several steps. In the first stage, a track-based Bayesian fusion scheme is used to fuse the classification results from each frame to obtain a fusion result for each track to decide whether a sign is present, as well as to determine the sign type. In order to determine the sign type, the temporal fusion scheme has been combined with a decision tree. In the second stage, the system combines and fuses probable identical objects which help to further reduce failures in the recognition process. The decision is based on the fusion results, as well as a position cue. Finally, a reasoning module is used to decide which of the passed signs should be shown to the driver. In addition to these modules, a general evaluation method for multi-class tracking systems is shown. While some failures are observed from the evaluation on object level, the additional post processing steps improve the system in such a way that the finally presented signs are almost always correct on the test set.</abstract><cop>Piscataway, NJ</cop><pub>IEEE</pub><doi>10.1109/TITS.2011.2157497</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2011-12, Vol.12 (4), p.1126-1134
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2011_2157497
source IEEE Electronic Library (IEL)
subjects Active safety
Applied sciences
Artificial intelligence
Bayesian methods
Computer science
control theory
systems
decision fusion
Decision theory. Utility theory
Decision trees
Drivers
evaluation
Exact sciences and technology
Failure
Fuses
Image classification
image processing
Modules
moving host
Operational research and scientific management
Operational research. Management science
Pattern recognition. Digital image processing. Computational geometry
Reasoning
Recognition
Tracking
traffic sign recognition
Traffic signs
title A Decision Fusion and Reasoning Module for a Traffic Sign Recognition System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Decision%20Fusion%20and%20Reasoning%20Module%20for%20a%20Traffic%20Sign%20Recognition%20System&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Meuter,%20M.&rft.date=2011-12-01&rft.volume=12&rft.issue=4&rft.spage=1126&rft.epage=1134&rft.pages=1126-1134&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2011.2157497&rft_dat=%3Cproquest_RIE%3E1671380848%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906551199&rft_id=info:pmid/&rft_ieee_id=5910385&rfr_iscdi=true