Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals

In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various leng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2011-01, Vol.15 (1), p.11-18
Hauptverfasser: Karagiannis, A, Constantinou, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 11
container_title IEEE journal of biomedical and health informatics
container_volume 15
creator Karagiannis, A
Constantinou, P
description In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.
doi_str_mv 10.1109/TITB.2010.2091648
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITB_2010_2091648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5629368</ieee_id><sourcerecordid>835118719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-abad49050342f825efc99d58329e27f2463f707f181a8c39a2f8e7012a368b953</originalsourceid><addsrcrecordid>eNqFkUtPwzAMgCME4jH4AQgJVVw4dcRJ0yTH8Z40HhIDjlXWupCpbUrTHfj3ZGxw4MLJif3Zkv0Rcgh0CED12XQ8PR8yGr6MakgTtUF2QQgVU8rZZnhTpWMpJeyQPe_nlEIigG-THQZUCsnpLnm5d9ZjPPLe-h6L6NL0JnrsXI4h07xFr7Z_j67q1nY2N1V05wqMLjF3deu87a1rIttE59bVWHwDT_atMZXfJ1tlCHiwjgPyfH01vbiNJw8344vRJM651H1sZqZINBWUJ6xUTGCZa10IxZlGJkuWpLyUVJagwKicaxMolBSY4amaacEH5HQ1t-3cxwJ9n9XW51hVpkG38JmSKeOpTJL_SS4AlAQdyJM_5NwtuuVWAVKCM5WqAMEKyjvnfYdl1na2Nt1nBjRbysmWcrKlnGwtJ_QcrwcvZuFevx0_NgJwtAIsIv6WRcp0WJd_AaUEkRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>838532868</pqid></control><display><type>article</type><title>Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Karagiannis, A ; Constantinou, P</creator><creatorcontrib>Karagiannis, A ; Constantinou, P</creatorcontrib><description>In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2010.2091648</identifier><identifier>PMID: 21075730</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical signal processing ; Computer Simulation ; Cutoff frequency ; Electrocardiography ; electrocardiography (ECG) ; Electrocardiography - methods ; empirical mode decomposition (EMD) ; Gaussian noise ; Humans ; Signal Processing, Computer-Assisted ; Signal to noise ratio ; Studies ; Time frequency analysis ; Time series ; Time series analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2011-01, Vol.15 (1), p.11-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-abad49050342f825efc99d58329e27f2463f707f181a8c39a2f8e7012a368b953</citedby><cites>FETCH-LOGICAL-c379t-abad49050342f825efc99d58329e27f2463f707f181a8c39a2f8e7012a368b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5629368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5629368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21075730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karagiannis, A</creatorcontrib><creatorcontrib>Constantinou, P</creatorcontrib><title>Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.</description><subject>Algorithms</subject><subject>Biomedical signal processing</subject><subject>Computer Simulation</subject><subject>Cutoff frequency</subject><subject>Electrocardiography</subject><subject>electrocardiography (ECG)</subject><subject>Electrocardiography - methods</subject><subject>empirical mode decomposition (EMD)</subject><subject>Gaussian noise</subject><subject>Humans</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal to noise ratio</subject><subject>Studies</subject><subject>Time frequency analysis</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtPwzAMgCME4jH4AQgJVVw4dcRJ0yTH8Z40HhIDjlXWupCpbUrTHfj3ZGxw4MLJif3Zkv0Rcgh0CED12XQ8PR8yGr6MakgTtUF2QQgVU8rZZnhTpWMpJeyQPe_nlEIigG-THQZUCsnpLnm5d9ZjPPLe-h6L6NL0JnrsXI4h07xFr7Z_j67q1nY2N1V05wqMLjF3deu87a1rIttE59bVWHwDT_atMZXfJ1tlCHiwjgPyfH01vbiNJw8344vRJM651H1sZqZINBWUJ6xUTGCZa10IxZlGJkuWpLyUVJagwKicaxMolBSY4amaacEH5HQ1t-3cxwJ9n9XW51hVpkG38JmSKeOpTJL_SS4AlAQdyJM_5NwtuuVWAVKCM5WqAMEKyjvnfYdl1na2Nt1nBjRbysmWcrKlnGwtJ_QcrwcvZuFevx0_NgJwtAIsIv6WRcp0WJd_AaUEkRk</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Karagiannis, A</creator><creator>Constantinou, P</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201101</creationdate><title>Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals</title><author>Karagiannis, A ; Constantinou, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-abad49050342f825efc99d58329e27f2463f707f181a8c39a2f8e7012a368b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Biomedical signal processing</topic><topic>Computer Simulation</topic><topic>Cutoff frequency</topic><topic>Electrocardiography</topic><topic>electrocardiography (ECG)</topic><topic>Electrocardiography - methods</topic><topic>empirical mode decomposition (EMD)</topic><topic>Gaussian noise</topic><topic>Humans</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal to noise ratio</topic><topic>Studies</topic><topic>Time frequency analysis</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karagiannis, A</creatorcontrib><creatorcontrib>Constantinou, P</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karagiannis, A</au><au>Constantinou, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2011-01</date><risdate>2011</risdate><volume>15</volume><issue>1</issue><spage>11</spage><epage>18</epage><pages>11-18</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21075730</pmid><doi>10.1109/TITB.2010.2091648</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7771
ispartof IEEE journal of biomedical and health informatics, 2011-01, Vol.15 (1), p.11-18
issn 1089-7771
2168-2194
1558-0032
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_TITB_2010_2091648
source IEEE Electronic Library (IEL)
subjects Algorithms
Biomedical signal processing
Computer Simulation
Cutoff frequency
Electrocardiography
electrocardiography (ECG)
Electrocardiography - methods
empirical mode decomposition (EMD)
Gaussian noise
Humans
Signal Processing, Computer-Assisted
Signal to noise ratio
Studies
Time frequency analysis
Time series
Time series analysis
title Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Assisted%20Data%20Processing%20With%20Empirical%20Mode%20Decomposition%20in%20Biomedical%20Signals&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Karagiannis,%20A&rft.date=2011-01&rft.volume=15&rft.issue=1&rft.spage=11&rft.epage=18&rft.pages=11-18&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2010.2091648&rft_dat=%3Cproquest_RIE%3E835118719%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=838532868&rft_id=info:pmid/21075730&rft_ieee_id=5629368&rfr_iscdi=true