Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals
In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various leng...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2011-01, Vol.15 (1), p.11-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 15 |
creator | Karagiannis, A Constantinou, P |
description | In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals. |
doi_str_mv | 10.1109/TITB.2010.2091648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITB_2010_2091648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5629368</ieee_id><sourcerecordid>835118719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-abad49050342f825efc99d58329e27f2463f707f181a8c39a2f8e7012a368b953</originalsourceid><addsrcrecordid>eNqFkUtPwzAMgCME4jH4AQgJVVw4dcRJ0yTH8Z40HhIDjlXWupCpbUrTHfj3ZGxw4MLJif3Zkv0Rcgh0CED12XQ8PR8yGr6MakgTtUF2QQgVU8rZZnhTpWMpJeyQPe_nlEIigG-THQZUCsnpLnm5d9ZjPPLe-h6L6NL0JnrsXI4h07xFr7Z_j67q1nY2N1V05wqMLjF3deu87a1rIttE59bVWHwDT_atMZXfJ1tlCHiwjgPyfH01vbiNJw8344vRJM651H1sZqZINBWUJ6xUTGCZa10IxZlGJkuWpLyUVJagwKicaxMolBSY4amaacEH5HQ1t-3cxwJ9n9XW51hVpkG38JmSKeOpTJL_SS4AlAQdyJM_5NwtuuVWAVKCM5WqAMEKyjvnfYdl1na2Nt1nBjRbysmWcrKlnGwtJ_QcrwcvZuFevx0_NgJwtAIsIv6WRcp0WJd_AaUEkRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>838532868</pqid></control><display><type>article</type><title>Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Karagiannis, A ; Constantinou, P</creator><creatorcontrib>Karagiannis, A ; Constantinou, P</creatorcontrib><description>In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2010.2091648</identifier><identifier>PMID: 21075730</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomedical signal processing ; Computer Simulation ; Cutoff frequency ; Electrocardiography ; electrocardiography (ECG) ; Electrocardiography - methods ; empirical mode decomposition (EMD) ; Gaussian noise ; Humans ; Signal Processing, Computer-Assisted ; Signal to noise ratio ; Studies ; Time frequency analysis ; Time series ; Time series analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2011-01, Vol.15 (1), p.11-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-abad49050342f825efc99d58329e27f2463f707f181a8c39a2f8e7012a368b953</citedby><cites>FETCH-LOGICAL-c379t-abad49050342f825efc99d58329e27f2463f707f181a8c39a2f8e7012a368b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5629368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5629368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21075730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karagiannis, A</creatorcontrib><creatorcontrib>Constantinou, P</creatorcontrib><title>Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.</description><subject>Algorithms</subject><subject>Biomedical signal processing</subject><subject>Computer Simulation</subject><subject>Cutoff frequency</subject><subject>Electrocardiography</subject><subject>electrocardiography (ECG)</subject><subject>Electrocardiography - methods</subject><subject>empirical mode decomposition (EMD)</subject><subject>Gaussian noise</subject><subject>Humans</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal to noise ratio</subject><subject>Studies</subject><subject>Time frequency analysis</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtPwzAMgCME4jH4AQgJVVw4dcRJ0yTH8Z40HhIDjlXWupCpbUrTHfj3ZGxw4MLJif3Zkv0Rcgh0CED12XQ8PR8yGr6MakgTtUF2QQgVU8rZZnhTpWMpJeyQPe_nlEIigG-THQZUCsnpLnm5d9ZjPPLe-h6L6NL0JnrsXI4h07xFr7Z_j67q1nY2N1V05wqMLjF3deu87a1rIttE59bVWHwDT_atMZXfJ1tlCHiwjgPyfH01vbiNJw8344vRJM651H1sZqZINBWUJ6xUTGCZa10IxZlGJkuWpLyUVJagwKicaxMolBSY4amaacEH5HQ1t-3cxwJ9n9XW51hVpkG38JmSKeOpTJL_SS4AlAQdyJM_5NwtuuVWAVKCM5WqAMEKyjvnfYdl1na2Nt1nBjRbysmWcrKlnGwtJ_QcrwcvZuFevx0_NgJwtAIsIv6WRcp0WJd_AaUEkRk</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Karagiannis, A</creator><creator>Constantinou, P</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201101</creationdate><title>Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals</title><author>Karagiannis, A ; Constantinou, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-abad49050342f825efc99d58329e27f2463f707f181a8c39a2f8e7012a368b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Biomedical signal processing</topic><topic>Computer Simulation</topic><topic>Cutoff frequency</topic><topic>Electrocardiography</topic><topic>electrocardiography (ECG)</topic><topic>Electrocardiography - methods</topic><topic>empirical mode decomposition (EMD)</topic><topic>Gaussian noise</topic><topic>Humans</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal to noise ratio</topic><topic>Studies</topic><topic>Time frequency analysis</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karagiannis, A</creatorcontrib><creatorcontrib>Constantinou, P</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karagiannis, A</au><au>Constantinou, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2011-01</date><risdate>2011</risdate><volume>15</volume><issue>1</issue><spage>11</spage><epage>18</epage><pages>11-18</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21075730</pmid><doi>10.1109/TITB.2010.2091648</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7771 |
ispartof | IEEE journal of biomedical and health informatics, 2011-01, Vol.15 (1), p.11-18 |
issn | 1089-7771 2168-2194 1558-0032 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITB_2010_2091648 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Biomedical signal processing Computer Simulation Cutoff frequency Electrocardiography electrocardiography (ECG) Electrocardiography - methods empirical mode decomposition (EMD) Gaussian noise Humans Signal Processing, Computer-Assisted Signal to noise ratio Studies Time frequency analysis Time series Time series analysis |
title | Noise-Assisted Data Processing With Empirical Mode Decomposition in Biomedical Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Assisted%20Data%20Processing%20With%20Empirical%20Mode%20Decomposition%20in%20Biomedical%20Signals&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Karagiannis,%20A&rft.date=2011-01&rft.volume=15&rft.issue=1&rft.spage=11&rft.epage=18&rft.pages=11-18&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2010.2091648&rft_dat=%3Cproquest_RIE%3E835118719%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=838532868&rft_id=info:pmid/21075730&rft_ieee_id=5629368&rfr_iscdi=true |