A Real-Time and Self-Calibrating Algorithm Based on Triaxial Accelerometer Signals for the Detection of Human Posture and Activity

Assessment of human activity and posture with triaxial accelerometers provides insightful information about the functional ability: classification of human activities in rehabilitation and elderly surveillance contexts has been already proposed in the literature. In the meanwhile, recent technologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2010-07, Vol.14 (4), p.1098-1105
Hauptverfasser: Curone, Davide, Bertolotti, Gian Mario, Cristiani, Andrea, Secco, Emanuele Lindo, Magenes, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 4
container_start_page 1098
container_title IEEE journal of biomedical and health informatics
container_volume 14
creator Curone, Davide
Bertolotti, Gian Mario
Cristiani, Andrea
Secco, Emanuele Lindo
Magenes, Giovanni
description Assessment of human activity and posture with triaxial accelerometers provides insightful information about the functional ability: classification of human activities in rehabilitation and elderly surveillance contexts has been already proposed in the literature. In the meanwhile, recent technological advances allow developing miniaturized wearable devices, integrated within garments, which may extend this assessment to novel tasks, such as real-time remote surveillance of workers and emergency operators intervening in harsh environments. We present an algorithm for human posture and activity-level detection, based on the real-time processing of the signals produced by one wearable triaxial accelerometer. The algorithm is independent of the sensor orientation with respect to the body. Furthermore, it associates to its outputs a "reliability" value, representing the classification quality, in order to launch reliable alarms only when effective dangerous conditions are detected. The system was tested on a customized device to estimate the computational resources needed for real-time functioning. Results exhibit an overall 96.2% accuracy when classifying both static and dynamic activities.
doi_str_mv 10.1109/TITB.2010.2050696
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITB_2010_2050696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5466127</ieee_id><sourcerecordid>734030895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-38ce1a4087e1074c4e83a96eae1837396355b1f3bca1236931e55fed59c151143</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EoqXwARASstQDpxSPHf87pgullSqBaDhHXu9k6yqJi50geuWT16tdeuDCyWPP7z2P5hHyFtgZALMf26v2_IyzcuVMMmXVM3IMUpqKMcGfl5oZW2mt4Yi8yvmOMagliJfkiLPaCGXsMfnT0O_ohqoNI1I3begNDn21ckNYJzeHaUubYRtTmG9Heu4ybmicaJuC-x3cQBvvccAUR5wx0ZuwndyQaR8TnW-Rfiqvfg5FEHt6uYxuot9inpe0_6kpvV9hfnhNXvRFhm8O5wn5cfG5XV1W11-_XK2a68oLw-ZKGI_gamY0AtO1r9EIZxU6BCO0sEpIuYZerL0DLpQVgFL2uJHWgwSoxQn5sPe9T_HngnnuxpDL_IObMC65M2CM4FzAf0ktaibKbmUhT_8h7-KSdlvogHFdzKxihYI95VPMOWHf3acwuvRQoG6XZLdLstsl2R2SLJr3B-dlPeLmSfE3ugK82wMBEZ_aslYKuBaPdWSggA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027231960</pqid></control><display><type>article</type><title>A Real-Time and Self-Calibrating Algorithm Based on Triaxial Accelerometer Signals for the Detection of Human Posture and Activity</title><source>IEEE Electronic Library (IEL)</source><creator>Curone, Davide ; Bertolotti, Gian Mario ; Cristiani, Andrea ; Secco, Emanuele Lindo ; Magenes, Giovanni</creator><creatorcontrib>Curone, Davide ; Bertolotti, Gian Mario ; Cristiani, Andrea ; Secco, Emanuele Lindo ; Magenes, Giovanni</creatorcontrib><description>Assessment of human activity and posture with triaxial accelerometers provides insightful information about the functional ability: classification of human activities in rehabilitation and elderly surveillance contexts has been already proposed in the literature. In the meanwhile, recent technological advances allow developing miniaturized wearable devices, integrated within garments, which may extend this assessment to novel tasks, such as real-time remote surveillance of workers and emergency operators intervening in harsh environments. We present an algorithm for human posture and activity-level detection, based on the real-time processing of the signals produced by one wearable triaxial accelerometer. The algorithm is independent of the sensor orientation with respect to the body. Furthermore, it associates to its outputs a "reliability" value, representing the classification quality, in order to launch reliable alarms only when effective dangerous conditions are detected. The system was tested on a customized device to estimate the computational resources needed for real-time functioning. Results exhibit an overall 96.2% accuracy when classifying both static and dynamic activities.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2010.2050696</identifier><identifier>PMID: 20483689</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accelerometers ; Activity and posture monitoring ; Algorithms ; Humans ; Posture ; Real time systems ; real-time movement classification ; Senior citizens ; Signal detection ; Signal processing ; Surveillance ; System testing ; triaxial accelerometer ; wearable device ; Wearable sensors</subject><ispartof>IEEE journal of biomedical and health informatics, 2010-07, Vol.14 (4), p.1098-1105</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-38ce1a4087e1074c4e83a96eae1837396355b1f3bca1236931e55fed59c151143</citedby><cites>FETCH-LOGICAL-c380t-38ce1a4087e1074c4e83a96eae1837396355b1f3bca1236931e55fed59c151143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5466127$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5466127$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20483689$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Curone, Davide</creatorcontrib><creatorcontrib>Bertolotti, Gian Mario</creatorcontrib><creatorcontrib>Cristiani, Andrea</creatorcontrib><creatorcontrib>Secco, Emanuele Lindo</creatorcontrib><creatorcontrib>Magenes, Giovanni</creatorcontrib><title>A Real-Time and Self-Calibrating Algorithm Based on Triaxial Accelerometer Signals for the Detection of Human Posture and Activity</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>Assessment of human activity and posture with triaxial accelerometers provides insightful information about the functional ability: classification of human activities in rehabilitation and elderly surveillance contexts has been already proposed in the literature. In the meanwhile, recent technological advances allow developing miniaturized wearable devices, integrated within garments, which may extend this assessment to novel tasks, such as real-time remote surveillance of workers and emergency operators intervening in harsh environments. We present an algorithm for human posture and activity-level detection, based on the real-time processing of the signals produced by one wearable triaxial accelerometer. The algorithm is independent of the sensor orientation with respect to the body. Furthermore, it associates to its outputs a "reliability" value, representing the classification quality, in order to launch reliable alarms only when effective dangerous conditions are detected. The system was tested on a customized device to estimate the computational resources needed for real-time functioning. Results exhibit an overall 96.2% accuracy when classifying both static and dynamic activities.</description><subject>Accelerometers</subject><subject>Activity and posture monitoring</subject><subject>Algorithms</subject><subject>Humans</subject><subject>Posture</subject><subject>Real time systems</subject><subject>real-time movement classification</subject><subject>Senior citizens</subject><subject>Signal detection</subject><subject>Signal processing</subject><subject>Surveillance</subject><subject>System testing</subject><subject>triaxial accelerometer</subject><subject>wearable device</subject><subject>Wearable sensors</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS0EoqXwARASstQDpxSPHf87pgullSqBaDhHXu9k6yqJi50geuWT16tdeuDCyWPP7z2P5hHyFtgZALMf26v2_IyzcuVMMmXVM3IMUpqKMcGfl5oZW2mt4Yi8yvmOMagliJfkiLPaCGXsMfnT0O_ohqoNI1I3begNDn21ckNYJzeHaUubYRtTmG9Heu4ybmicaJuC-x3cQBvvccAUR5wx0ZuwndyQaR8TnW-Rfiqvfg5FEHt6uYxuot9inpe0_6kpvV9hfnhNXvRFhm8O5wn5cfG5XV1W11-_XK2a68oLw-ZKGI_gamY0AtO1r9EIZxU6BCO0sEpIuYZerL0DLpQVgFL2uJHWgwSoxQn5sPe9T_HngnnuxpDL_IObMC65M2CM4FzAf0ktaibKbmUhT_8h7-KSdlvogHFdzKxihYI95VPMOWHf3acwuvRQoG6XZLdLstsl2R2SLJr3B-dlPeLmSfE3ugK82wMBEZ_aslYKuBaPdWSggA</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Curone, Davide</creator><creator>Bertolotti, Gian Mario</creator><creator>Cristiani, Andrea</creator><creator>Secco, Emanuele Lindo</creator><creator>Magenes, Giovanni</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201007</creationdate><title>A Real-Time and Self-Calibrating Algorithm Based on Triaxial Accelerometer Signals for the Detection of Human Posture and Activity</title><author>Curone, Davide ; Bertolotti, Gian Mario ; Cristiani, Andrea ; Secco, Emanuele Lindo ; Magenes, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-38ce1a4087e1074c4e83a96eae1837396355b1f3bca1236931e55fed59c151143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accelerometers</topic><topic>Activity and posture monitoring</topic><topic>Algorithms</topic><topic>Humans</topic><topic>Posture</topic><topic>Real time systems</topic><topic>real-time movement classification</topic><topic>Senior citizens</topic><topic>Signal detection</topic><topic>Signal processing</topic><topic>Surveillance</topic><topic>System testing</topic><topic>triaxial accelerometer</topic><topic>wearable device</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curone, Davide</creatorcontrib><creatorcontrib>Bertolotti, Gian Mario</creatorcontrib><creatorcontrib>Cristiani, Andrea</creatorcontrib><creatorcontrib>Secco, Emanuele Lindo</creatorcontrib><creatorcontrib>Magenes, Giovanni</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Curone, Davide</au><au>Bertolotti, Gian Mario</au><au>Cristiani, Andrea</au><au>Secco, Emanuele Lindo</au><au>Magenes, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Real-Time and Self-Calibrating Algorithm Based on Triaxial Accelerometer Signals for the Detection of Human Posture and Activity</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2010-07</date><risdate>2010</risdate><volume>14</volume><issue>4</issue><spage>1098</spage><epage>1105</epage><pages>1098-1105</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>Assessment of human activity and posture with triaxial accelerometers provides insightful information about the functional ability: classification of human activities in rehabilitation and elderly surveillance contexts has been already proposed in the literature. In the meanwhile, recent technological advances allow developing miniaturized wearable devices, integrated within garments, which may extend this assessment to novel tasks, such as real-time remote surveillance of workers and emergency operators intervening in harsh environments. We present an algorithm for human posture and activity-level detection, based on the real-time processing of the signals produced by one wearable triaxial accelerometer. The algorithm is independent of the sensor orientation with respect to the body. Furthermore, it associates to its outputs a "reliability" value, representing the classification quality, in order to launch reliable alarms only when effective dangerous conditions are detected. The system was tested on a customized device to estimate the computational resources needed for real-time functioning. Results exhibit an overall 96.2% accuracy when classifying both static and dynamic activities.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20483689</pmid><doi>10.1109/TITB.2010.2050696</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7771
ispartof IEEE journal of biomedical and health informatics, 2010-07, Vol.14 (4), p.1098-1105
issn 1089-7771
2168-2194
1558-0032
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_TITB_2010_2050696
source IEEE Electronic Library (IEL)
subjects Accelerometers
Activity and posture monitoring
Algorithms
Humans
Posture
Real time systems
real-time movement classification
Senior citizens
Signal detection
Signal processing
Surveillance
System testing
triaxial accelerometer
wearable device
Wearable sensors
title A Real-Time and Self-Calibrating Algorithm Based on Triaxial Accelerometer Signals for the Detection of Human Posture and Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Real-Time%20and%20Self-Calibrating%20Algorithm%20Based%20on%20Triaxial%20Accelerometer%20Signals%20for%20the%20Detection%20of%20Human%20Posture%20and%20Activity&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Curone,%20Davide&rft.date=2010-07&rft.volume=14&rft.issue=4&rft.spage=1098&rft.epage=1105&rft.pages=1098-1105&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2010.2050696&rft_dat=%3Cproquest_RIE%3E734030895%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027231960&rft_id=info:pmid/20483689&rft_ieee_id=5466127&rfr_iscdi=true