Cardiac Motion Recovery via Active Trajectory Field Models
Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computationa...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2009-03, Vol.13 (2), p.226-235 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 235 |
---|---|
container_issue | 2 |
container_start_page | 226 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 13 |
creator | Gilliam, A.D. Epstein, F.H. Acton, S.T. |
description | Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computational intelligence will continue to advance the frontier of cardiovascular medicine. Recently, researchers have turned to a new class of tissue motion imaging techniques, including displacement encoding with stimulated echoes (DENSE) in cardiac magnetic resonance (cMR) imaging, to directly quantify cardiac displacement and produce accurate spatiotemporal measurements of myocardial strain, twist, and torsion. The associated analysis of DENSE cMR and other tissue motion imagery, however, represents a major bottleneck in the study of intramyocardial mechanics. In the computational intelligence area of deformable models, this paper develops an automated motion recovery technique termed active trajectory field models (ATFMs) geared toward these new motion imaging protocols, offering quantitative physiological measurements without the pains of manual analyses. This novel generative deformable model exploits both image information and prior knowledge of cardiac motion, utilizing a point distribution model derived from a training set of myocardial trajectory fields to automatically recover cardiac motion from a noisy image sequence. The effectiveness of the ATFM method is demonstrated by quantifying myocardial motion in 2-D short-axis murine DENSE cMR image sequences both before and after myocardial infarction, producing results comparable to existing semiautomatic analysis methods. |
doi_str_mv | 10.1109/TITB.2008.2009221 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITB_2008_2009221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4757271</ieee_id><sourcerecordid>2294850341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-8a53dc552fa124c2a463a20145569209c4bc74e6e09c3c44df2cc3dd0a1603633</originalsourceid><addsrcrecordid>eNqFkVuLFDEQhYMo7kV_gAjS-KBPvVbl2vFBWIddXVgRZHwO2XSNZujprEnPwP5708ywXh70JSlSX50k5zD2DOEMEeyb5dXy_RkH6ObFco4P2DEq1bUAgj-sNXS2NcbgETspZQ2AUqF4zI7QokHF7TF7u_C5jz40n9IU09h8oZB2lO-aXfTNeZjijppl9msKU6qnl5GGvrI9DeUJe7TyQ6Gnh_2Ufb28WC4-ttefP1wtzq_boMBMbeeV6INSfOWRy8C91MLz-SlKWw42yJtgJGmqpQhS9iseguh78KhBaCFO2bu97u32ZkN9oHHKfnC3OW58vnPJR_dnZ4zf3be0c9yiNoJXgdcHgZx-bKlMbhNLoGHwI6VtcZ02Rmpl56te_ZPUpvpsrf4vyEEhgJYVfPkXuE7bPFa_XKeM5EbJGcI9FHIqJdPq_nMIbk7azUm7OWl3SLrOvPjdlV8Th2gr8HwPRCK6b0ujDDcofgIJY6sX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857427544</pqid></control><display><type>article</type><title>Cardiac Motion Recovery via Active Trajectory Field Models</title><source>IEEE Electronic Library (IEL)</source><creator>Gilliam, A.D. ; Epstein, F.H. ; Acton, S.T.</creator><creatorcontrib>Gilliam, A.D. ; Epstein, F.H. ; Acton, S.T.</creatorcontrib><description>Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computational intelligence will continue to advance the frontier of cardiovascular medicine. Recently, researchers have turned to a new class of tissue motion imaging techniques, including displacement encoding with stimulated echoes (DENSE) in cardiac magnetic resonance (cMR) imaging, to directly quantify cardiac displacement and produce accurate spatiotemporal measurements of myocardial strain, twist, and torsion. The associated analysis of DENSE cMR and other tissue motion imagery, however, represents a major bottleneck in the study of intramyocardial mechanics. In the computational intelligence area of deformable models, this paper develops an automated motion recovery technique termed active trajectory field models (ATFMs) geared toward these new motion imaging protocols, offering quantitative physiological measurements without the pains of manual analyses. This novel generative deformable model exploits both image information and prior knowledge of cardiac motion, utilizing a point distribution model derived from a training set of myocardial trajectory fields to automatically recover cardiac motion from a noisy image sequence. The effectiveness of the ATFM method is demonstrated by quantifying myocardial motion in 2-D short-axis murine DENSE cMR image sequences both before and after myocardial infarction, producing results comparable to existing semiautomatic analysis methods.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2008.2009221</identifier><identifier>PMID: 19171529</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active models ; Algorithms ; Animals ; Artificial Intelligence ; Biomedical imaging ; cardiac MRI ; Cardiology ; Computational intelligence ; Deformable models ; displacement encoding with stimulated echoes (DENSE) ; Heart - physiology ; Heart - physiopathology ; Heart attacks ; Image analysis ; Image motion analysis ; Image Processing, Computer-Assisted - methods ; left ventricular function ; Magnetic resonance imaging ; Magnetic Resonance Imaging, Cine - methods ; Mice ; Models, Cardiovascular ; Motion analysis ; Motion measurement ; Myocardial Infarction - physiopathology ; myocardial tagging ; Myocardium ; Principal Component Analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2009-03, Vol.13 (2), p.226-235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-8a53dc552fa124c2a463a20145569209c4bc74e6e09c3c44df2cc3dd0a1603633</citedby><cites>FETCH-LOGICAL-c507t-8a53dc552fa124c2a463a20145569209c4bc74e6e09c3c44df2cc3dd0a1603633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4757271$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4757271$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19171529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilliam, A.D.</creatorcontrib><creatorcontrib>Epstein, F.H.</creatorcontrib><creatorcontrib>Acton, S.T.</creatorcontrib><title>Cardiac Motion Recovery via Active Trajectory Field Models</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computational intelligence will continue to advance the frontier of cardiovascular medicine. Recently, researchers have turned to a new class of tissue motion imaging techniques, including displacement encoding with stimulated echoes (DENSE) in cardiac magnetic resonance (cMR) imaging, to directly quantify cardiac displacement and produce accurate spatiotemporal measurements of myocardial strain, twist, and torsion. The associated analysis of DENSE cMR and other tissue motion imagery, however, represents a major bottleneck in the study of intramyocardial mechanics. In the computational intelligence area of deformable models, this paper develops an automated motion recovery technique termed active trajectory field models (ATFMs) geared toward these new motion imaging protocols, offering quantitative physiological measurements without the pains of manual analyses. This novel generative deformable model exploits both image information and prior knowledge of cardiac motion, utilizing a point distribution model derived from a training set of myocardial trajectory fields to automatically recover cardiac motion from a noisy image sequence. The effectiveness of the ATFM method is demonstrated by quantifying myocardial motion in 2-D short-axis murine DENSE cMR image sequences both before and after myocardial infarction, producing results comparable to existing semiautomatic analysis methods.</description><subject>Active models</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Biomedical imaging</subject><subject>cardiac MRI</subject><subject>Cardiology</subject><subject>Computational intelligence</subject><subject>Deformable models</subject><subject>displacement encoding with stimulated echoes (DENSE)</subject><subject>Heart - physiology</subject><subject>Heart - physiopathology</subject><subject>Heart attacks</subject><subject>Image analysis</subject><subject>Image motion analysis</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>left ventricular function</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Mice</subject><subject>Models, Cardiovascular</subject><subject>Motion analysis</subject><subject>Motion measurement</subject><subject>Myocardial Infarction - physiopathology</subject><subject>myocardial tagging</subject><subject>Myocardium</subject><subject>Principal Component Analysis</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkVuLFDEQhYMo7kV_gAjS-KBPvVbl2vFBWIddXVgRZHwO2XSNZujprEnPwP5708ywXh70JSlSX50k5zD2DOEMEeyb5dXy_RkH6ObFco4P2DEq1bUAgj-sNXS2NcbgETspZQ2AUqF4zI7QokHF7TF7u_C5jz40n9IU09h8oZB2lO-aXfTNeZjijppl9msKU6qnl5GGvrI9DeUJe7TyQ6Gnh_2Ufb28WC4-ttefP1wtzq_boMBMbeeV6INSfOWRy8C91MLz-SlKWw42yJtgJGmqpQhS9iseguh78KhBaCFO2bu97u32ZkN9oHHKfnC3OW58vnPJR_dnZ4zf3be0c9yiNoJXgdcHgZx-bKlMbhNLoGHwI6VtcZ02Rmpl56te_ZPUpvpsrf4vyEEhgJYVfPkXuE7bPFa_XKeM5EbJGcI9FHIqJdPq_nMIbk7azUm7OWl3SLrOvPjdlV8Th2gr8HwPRCK6b0ujDDcofgIJY6sX</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Gilliam, A.D.</creator><creator>Epstein, F.H.</creator><creator>Acton, S.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>Cardiac Motion Recovery via Active Trajectory Field Models</title><author>Gilliam, A.D. ; Epstein, F.H. ; Acton, S.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-8a53dc552fa124c2a463a20145569209c4bc74e6e09c3c44df2cc3dd0a1603633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active models</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Biomedical imaging</topic><topic>cardiac MRI</topic><topic>Cardiology</topic><topic>Computational intelligence</topic><topic>Deformable models</topic><topic>displacement encoding with stimulated echoes (DENSE)</topic><topic>Heart - physiology</topic><topic>Heart - physiopathology</topic><topic>Heart attacks</topic><topic>Image analysis</topic><topic>Image motion analysis</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>left ventricular function</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Mice</topic><topic>Models, Cardiovascular</topic><topic>Motion analysis</topic><topic>Motion measurement</topic><topic>Myocardial Infarction - physiopathology</topic><topic>myocardial tagging</topic><topic>Myocardium</topic><topic>Principal Component Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilliam, A.D.</creatorcontrib><creatorcontrib>Epstein, F.H.</creatorcontrib><creatorcontrib>Acton, S.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gilliam, A.D.</au><au>Epstein, F.H.</au><au>Acton, S.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac Motion Recovery via Active Trajectory Field Models</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>13</volume><issue>2</issue><spage>226</spage><epage>235</epage><pages>226-235</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computational intelligence will continue to advance the frontier of cardiovascular medicine. Recently, researchers have turned to a new class of tissue motion imaging techniques, including displacement encoding with stimulated echoes (DENSE) in cardiac magnetic resonance (cMR) imaging, to directly quantify cardiac displacement and produce accurate spatiotemporal measurements of myocardial strain, twist, and torsion. The associated analysis of DENSE cMR and other tissue motion imagery, however, represents a major bottleneck in the study of intramyocardial mechanics. In the computational intelligence area of deformable models, this paper develops an automated motion recovery technique termed active trajectory field models (ATFMs) geared toward these new motion imaging protocols, offering quantitative physiological measurements without the pains of manual analyses. This novel generative deformable model exploits both image information and prior knowledge of cardiac motion, utilizing a point distribution model derived from a training set of myocardial trajectory fields to automatically recover cardiac motion from a noisy image sequence. The effectiveness of the ATFM method is demonstrated by quantifying myocardial motion in 2-D short-axis murine DENSE cMR image sequences both before and after myocardial infarction, producing results comparable to existing semiautomatic analysis methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19171529</pmid><doi>10.1109/TITB.2008.2009221</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7771 |
ispartof | IEEE journal of biomedical and health informatics, 2009-03, Vol.13 (2), p.226-235 |
issn | 1089-7771 2168-2194 1558-0032 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITB_2008_2009221 |
source | IEEE Electronic Library (IEL) |
subjects | Active models Algorithms Animals Artificial Intelligence Biomedical imaging cardiac MRI Cardiology Computational intelligence Deformable models displacement encoding with stimulated echoes (DENSE) Heart - physiology Heart - physiopathology Heart attacks Image analysis Image motion analysis Image Processing, Computer-Assisted - methods left ventricular function Magnetic resonance imaging Magnetic Resonance Imaging, Cine - methods Mice Models, Cardiovascular Motion analysis Motion measurement Myocardial Infarction - physiopathology myocardial tagging Myocardium Principal Component Analysis |
title | Cardiac Motion Recovery via Active Trajectory Field Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac%20Motion%20Recovery%20via%20Active%20Trajectory%20Field%20Models&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Gilliam,%20A.D.&rft.date=2009-03-01&rft.volume=13&rft.issue=2&rft.spage=226&rft.epage=235&rft.pages=226-235&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2008.2009221&rft_dat=%3Cproquest_RIE%3E2294850341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857427544&rft_id=info:pmid/19171529&rft_ieee_id=4757271&rfr_iscdi=true |