Cardiac Motion Recovery via Active Trajectory Field Models

Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2009-03, Vol.13 (2), p.226-235
Hauptverfasser: Gilliam, A.D., Epstein, F.H., Acton, S.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 2
container_start_page 226
container_title IEEE journal of biomedical and health informatics
container_volume 13
creator Gilliam, A.D.
Epstein, F.H.
Acton, S.T.
description Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computational intelligence will continue to advance the frontier of cardiovascular medicine. Recently, researchers have turned to a new class of tissue motion imaging techniques, including displacement encoding with stimulated echoes (DENSE) in cardiac magnetic resonance (cMR) imaging, to directly quantify cardiac displacement and produce accurate spatiotemporal measurements of myocardial strain, twist, and torsion. The associated analysis of DENSE cMR and other tissue motion imagery, however, represents a major bottleneck in the study of intramyocardial mechanics. In the computational intelligence area of deformable models, this paper develops an automated motion recovery technique termed active trajectory field models (ATFMs) geared toward these new motion imaging protocols, offering quantitative physiological measurements without the pains of manual analyses. This novel generative deformable model exploits both image information and prior knowledge of cardiac motion, utilizing a point distribution model derived from a training set of myocardial trajectory fields to automatically recover cardiac motion from a noisy image sequence. The effectiveness of the ATFM method is demonstrated by quantifying myocardial motion in 2-D short-axis murine DENSE cMR image sequences both before and after myocardial infarction, producing results comparable to existing semiautomatic analysis methods.
doi_str_mv 10.1109/TITB.2008.2009221
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITB_2008_2009221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4757271</ieee_id><sourcerecordid>2294850341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-8a53dc552fa124c2a463a20145569209c4bc74e6e09c3c44df2cc3dd0a1603633</originalsourceid><addsrcrecordid>eNqFkVuLFDEQhYMo7kV_gAjS-KBPvVbl2vFBWIddXVgRZHwO2XSNZujprEnPwP5708ywXh70JSlSX50k5zD2DOEMEeyb5dXy_RkH6ObFco4P2DEq1bUAgj-sNXS2NcbgETspZQ2AUqF4zI7QokHF7TF7u_C5jz40n9IU09h8oZB2lO-aXfTNeZjijppl9msKU6qnl5GGvrI9DeUJe7TyQ6Gnh_2Ufb28WC4-ttefP1wtzq_boMBMbeeV6INSfOWRy8C91MLz-SlKWw42yJtgJGmqpQhS9iseguh78KhBaCFO2bu97u32ZkN9oHHKfnC3OW58vnPJR_dnZ4zf3be0c9yiNoJXgdcHgZx-bKlMbhNLoGHwI6VtcZ02Rmpl56te_ZPUpvpsrf4vyEEhgJYVfPkXuE7bPFa_XKeM5EbJGcI9FHIqJdPq_nMIbk7azUm7OWl3SLrOvPjdlV8Th2gr8HwPRCK6b0ujDDcofgIJY6sX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857427544</pqid></control><display><type>article</type><title>Cardiac Motion Recovery via Active Trajectory Field Models</title><source>IEEE Electronic Library (IEL)</source><creator>Gilliam, A.D. ; Epstein, F.H. ; Acton, S.T.</creator><creatorcontrib>Gilliam, A.D. ; Epstein, F.H. ; Acton, S.T.</creatorcontrib><description>Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computational intelligence will continue to advance the frontier of cardiovascular medicine. Recently, researchers have turned to a new class of tissue motion imaging techniques, including displacement encoding with stimulated echoes (DENSE) in cardiac magnetic resonance (cMR) imaging, to directly quantify cardiac displacement and produce accurate spatiotemporal measurements of myocardial strain, twist, and torsion. The associated analysis of DENSE cMR and other tissue motion imagery, however, represents a major bottleneck in the study of intramyocardial mechanics. In the computational intelligence area of deformable models, this paper develops an automated motion recovery technique termed active trajectory field models (ATFMs) geared toward these new motion imaging protocols, offering quantitative physiological measurements without the pains of manual analyses. This novel generative deformable model exploits both image information and prior knowledge of cardiac motion, utilizing a point distribution model derived from a training set of myocardial trajectory fields to automatically recover cardiac motion from a noisy image sequence. The effectiveness of the ATFM method is demonstrated by quantifying myocardial motion in 2-D short-axis murine DENSE cMR image sequences both before and after myocardial infarction, producing results comparable to existing semiautomatic analysis methods.</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2008.2009221</identifier><identifier>PMID: 19171529</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active models ; Algorithms ; Animals ; Artificial Intelligence ; Biomedical imaging ; cardiac MRI ; Cardiology ; Computational intelligence ; Deformable models ; displacement encoding with stimulated echoes (DENSE) ; Heart - physiology ; Heart - physiopathology ; Heart attacks ; Image analysis ; Image motion analysis ; Image Processing, Computer-Assisted - methods ; left ventricular function ; Magnetic resonance imaging ; Magnetic Resonance Imaging, Cine - methods ; Mice ; Models, Cardiovascular ; Motion analysis ; Motion measurement ; Myocardial Infarction - physiopathology ; myocardial tagging ; Myocardium ; Principal Component Analysis</subject><ispartof>IEEE journal of biomedical and health informatics, 2009-03, Vol.13 (2), p.226-235</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-8a53dc552fa124c2a463a20145569209c4bc74e6e09c3c44df2cc3dd0a1603633</citedby><cites>FETCH-LOGICAL-c507t-8a53dc552fa124c2a463a20145569209c4bc74e6e09c3c44df2cc3dd0a1603633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4757271$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4757271$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19171529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilliam, A.D.</creatorcontrib><creatorcontrib>Epstein, F.H.</creatorcontrib><creatorcontrib>Acton, S.T.</creatorcontrib><title>Cardiac Motion Recovery via Active Trajectory Field Models</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computational intelligence will continue to advance the frontier of cardiovascular medicine. Recently, researchers have turned to a new class of tissue motion imaging techniques, including displacement encoding with stimulated echoes (DENSE) in cardiac magnetic resonance (cMR) imaging, to directly quantify cardiac displacement and produce accurate spatiotemporal measurements of myocardial strain, twist, and torsion. The associated analysis of DENSE cMR and other tissue motion imagery, however, represents a major bottleneck in the study of intramyocardial mechanics. In the computational intelligence area of deformable models, this paper develops an automated motion recovery technique termed active trajectory field models (ATFMs) geared toward these new motion imaging protocols, offering quantitative physiological measurements without the pains of manual analyses. This novel generative deformable model exploits both image information and prior knowledge of cardiac motion, utilizing a point distribution model derived from a training set of myocardial trajectory fields to automatically recover cardiac motion from a noisy image sequence. The effectiveness of the ATFM method is demonstrated by quantifying myocardial motion in 2-D short-axis murine DENSE cMR image sequences both before and after myocardial infarction, producing results comparable to existing semiautomatic analysis methods.</description><subject>Active models</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Biomedical imaging</subject><subject>cardiac MRI</subject><subject>Cardiology</subject><subject>Computational intelligence</subject><subject>Deformable models</subject><subject>displacement encoding with stimulated echoes (DENSE)</subject><subject>Heart - physiology</subject><subject>Heart - physiopathology</subject><subject>Heart attacks</subject><subject>Image analysis</subject><subject>Image motion analysis</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>left ventricular function</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging, Cine - methods</subject><subject>Mice</subject><subject>Models, Cardiovascular</subject><subject>Motion analysis</subject><subject>Motion measurement</subject><subject>Myocardial Infarction - physiopathology</subject><subject>myocardial tagging</subject><subject>Myocardium</subject><subject>Principal Component Analysis</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkVuLFDEQhYMo7kV_gAjS-KBPvVbl2vFBWIddXVgRZHwO2XSNZujprEnPwP5708ywXh70JSlSX50k5zD2DOEMEeyb5dXy_RkH6ObFco4P2DEq1bUAgj-sNXS2NcbgETspZQ2AUqF4zI7QokHF7TF7u_C5jz40n9IU09h8oZB2lO-aXfTNeZjijppl9msKU6qnl5GGvrI9DeUJe7TyQ6Gnh_2Ufb28WC4-ttefP1wtzq_boMBMbeeV6INSfOWRy8C91MLz-SlKWw42yJtgJGmqpQhS9iseguh78KhBaCFO2bu97u32ZkN9oHHKfnC3OW58vnPJR_dnZ4zf3be0c9yiNoJXgdcHgZx-bKlMbhNLoGHwI6VtcZ02Rmpl56te_ZPUpvpsrf4vyEEhgJYVfPkXuE7bPFa_XKeM5EbJGcI9FHIqJdPq_nMIbk7azUm7OWl3SLrOvPjdlV8Th2gr8HwPRCK6b0ujDDcofgIJY6sX</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Gilliam, A.D.</creator><creator>Epstein, F.H.</creator><creator>Acton, S.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>Cardiac Motion Recovery via Active Trajectory Field Models</title><author>Gilliam, A.D. ; Epstein, F.H. ; Acton, S.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-8a53dc552fa124c2a463a20145569209c4bc74e6e09c3c44df2cc3dd0a1603633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active models</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Biomedical imaging</topic><topic>cardiac MRI</topic><topic>Cardiology</topic><topic>Computational intelligence</topic><topic>Deformable models</topic><topic>displacement encoding with stimulated echoes (DENSE)</topic><topic>Heart - physiology</topic><topic>Heart - physiopathology</topic><topic>Heart attacks</topic><topic>Image analysis</topic><topic>Image motion analysis</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>left ventricular function</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging, Cine - methods</topic><topic>Mice</topic><topic>Models, Cardiovascular</topic><topic>Motion analysis</topic><topic>Motion measurement</topic><topic>Myocardial Infarction - physiopathology</topic><topic>myocardial tagging</topic><topic>Myocardium</topic><topic>Principal Component Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilliam, A.D.</creatorcontrib><creatorcontrib>Epstein, F.H.</creatorcontrib><creatorcontrib>Acton, S.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gilliam, A.D.</au><au>Epstein, F.H.</au><au>Acton, S.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac Motion Recovery via Active Trajectory Field Models</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>13</volume><issue>2</issue><spage>226</spage><epage>235</epage><pages>226-235</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>Cardiovascular researchers are constantly developing new and innovative medical imaging technologies, striving to improve the understanding, diagnosis, and treatment of cardiovascular dysfunction. Combining these sophisticated imaging methods with advancements in image understanding via computational intelligence will continue to advance the frontier of cardiovascular medicine. Recently, researchers have turned to a new class of tissue motion imaging techniques, including displacement encoding with stimulated echoes (DENSE) in cardiac magnetic resonance (cMR) imaging, to directly quantify cardiac displacement and produce accurate spatiotemporal measurements of myocardial strain, twist, and torsion. The associated analysis of DENSE cMR and other tissue motion imagery, however, represents a major bottleneck in the study of intramyocardial mechanics. In the computational intelligence area of deformable models, this paper develops an automated motion recovery technique termed active trajectory field models (ATFMs) geared toward these new motion imaging protocols, offering quantitative physiological measurements without the pains of manual analyses. This novel generative deformable model exploits both image information and prior knowledge of cardiac motion, utilizing a point distribution model derived from a training set of myocardial trajectory fields to automatically recover cardiac motion from a noisy image sequence. The effectiveness of the ATFM method is demonstrated by quantifying myocardial motion in 2-D short-axis murine DENSE cMR image sequences both before and after myocardial infarction, producing results comparable to existing semiautomatic analysis methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19171529</pmid><doi>10.1109/TITB.2008.2009221</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7771
ispartof IEEE journal of biomedical and health informatics, 2009-03, Vol.13 (2), p.226-235
issn 1089-7771
2168-2194
1558-0032
2168-2208
language eng
recordid cdi_crossref_primary_10_1109_TITB_2008_2009221
source IEEE Electronic Library (IEL)
subjects Active models
Algorithms
Animals
Artificial Intelligence
Biomedical imaging
cardiac MRI
Cardiology
Computational intelligence
Deformable models
displacement encoding with stimulated echoes (DENSE)
Heart - physiology
Heart - physiopathology
Heart attacks
Image analysis
Image motion analysis
Image Processing, Computer-Assisted - methods
left ventricular function
Magnetic resonance imaging
Magnetic Resonance Imaging, Cine - methods
Mice
Models, Cardiovascular
Motion analysis
Motion measurement
Myocardial Infarction - physiopathology
myocardial tagging
Myocardium
Principal Component Analysis
title Cardiac Motion Recovery via Active Trajectory Field Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac%20Motion%20Recovery%20via%20Active%20Trajectory%20Field%20Models&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Gilliam,%20A.D.&rft.date=2009-03-01&rft.volume=13&rft.issue=2&rft.spage=226&rft.epage=235&rft.pages=226-235&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2008.2009221&rft_dat=%3Cproquest_RIE%3E2294850341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857427544&rft_id=info:pmid/19171529&rft_ieee_id=4757271&rfr_iscdi=true