Aggregating automatically extracted regulatory pathway relations
Automatic tools to extract information from biomedical texts are needed to help researchers leverage the vast and increasing body of biomedical literature. While several biomedical relation extraction systems have been created and tested, little work has been done to meaningfully organize the extrac...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2006-01, Vol.10 (1), p.100-108 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 1 |
container_start_page | 100 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 10 |
creator | Marshall, B. Hua Su McDonald, D. Eggers, S. Chen, H. |
description | Automatic tools to extract information from biomedical texts are needed to help researchers leverage the vast and increasing body of biomedical literature. While several biomedical relation extraction systems have been created and tested, little work has been done to meaningfully organize the extracted relations. Organizational processes should consolidate multiple references to the same objects over various levels of granularity, connect those references to other resources, and capture contextual information. We propose a feature decomposition approach to relation aggregation to support a five-level aggregation framework. Our BioAggregate tagger uses this approach to identify key features in extracted relation name strings. We show encouraging feature assignment accuracy and report substantial consolidation in a network of extracted relations |
doi_str_mv | 10.1109/TITB.2005.856857 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITB_2005_856857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1573712</ieee_id><sourcerecordid>2342543831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-9514d33f84f2f965057784269b92f666fd98c3629ef36b5fbecabec5ea60d26b3</originalsourceid><addsrcrecordid>eNqFkUtLw0AUhQdRbK3uBUGKC12lzvuxsxYfhYKbuh4myUxMSZs6k6D5905JoeBCF5d7ufOdM3APAJcIThCC6n45Xz5OMIRsIhmXTByBIWJMJhASfBxnKFUihEADcBbCCkJEGSKnYIA4pQwzNgQP06LwtjBNuSnGpm3qdRwzU1Xd2H433mSNzccRaCvT1L4bb03z8WW6uIqLst6Ec3DiTBXsxb6PwPvz03L2mizeXuaz6SLJKJFNohiiOSFOUoed4gwyISTFXKUKO865y5XMCMfKOsJT5lKbmVjMGg5zzFMyAne979bXn60NjV6XIbNVZTa2boOWgiIliFSRvP2TFFDEj-OJ_gOxhFhI9L8jUhQrQkQEb36Bq7r1m3gXLTnjAiImIwR7KPN1CN46vfXl2vhOI6h3sepdrHoXq-5jjZLrvW-brm1-EOxzjMBVD5TW2sNzlAqEyQ8kbaWN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865670158</pqid></control><display><type>article</type><title>Aggregating automatically extracted regulatory pathway relations</title><source>IEEE Electronic Library (IEL)</source><creator>Marshall, B. ; Hua Su ; McDonald, D. ; Eggers, S. ; Chen, H.</creator><creatorcontrib>Marshall, B. ; Hua Su ; McDonald, D. ; Eggers, S. ; Chen, H.</creatorcontrib><description>Automatic tools to extract information from biomedical texts are needed to help researchers leverage the vast and increasing body of biomedical literature. While several biomedical relation extraction systems have been created and tested, little work has been done to meaningfully organize the extracted relations. Organizational processes should consolidate multiple references to the same objects over various levels of granularity, connect those references to other resources, and capture contextual information. We propose a feature decomposition approach to relation aggregation to support a five-level aggregation framework. Our BioAggregate tagger uses this approach to identify key features in extracted relation name strings. We show encouraging feature assignment accuracy and report substantial consolidation in a network of extracted relations</description><identifier>ISSN: 1089-7771</identifier><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 1558-0032</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/TITB.2005.856857</identifier><identifier>PMID: 16445255</identifier><identifier>CODEN: ITIBFX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Abstracts ; Algorithm design and analysis ; Artificial Intelligence ; Data mining ; Feature extraction ; Information analysis ; Information Storage and Retrieval - methods ; Knowledge representation ; Models, Biological ; Natural Language Processing ; Object recognition ; Organizing ; Pattern Recognition, Automated ; Proteome - metabolism ; regulatory pathway analysis ; relation parsing ; Signal Transduction - physiology ; Spatial databases ; System testing ; Visualization ; Vocabulary, Controlled</subject><ispartof>IEEE journal of biomedical and health informatics, 2006-01, Vol.10 (1), p.100-108</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-9514d33f84f2f965057784269b92f666fd98c3629ef36b5fbecabec5ea60d26b3</citedby><cites>FETCH-LOGICAL-c438t-9514d33f84f2f965057784269b92f666fd98c3629ef36b5fbecabec5ea60d26b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1573712$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1573712$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16445255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marshall, B.</creatorcontrib><creatorcontrib>Hua Su</creatorcontrib><creatorcontrib>McDonald, D.</creatorcontrib><creatorcontrib>Eggers, S.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><title>Aggregating automatically extracted regulatory pathway relations</title><title>IEEE journal of biomedical and health informatics</title><addtitle>TITB</addtitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><description>Automatic tools to extract information from biomedical texts are needed to help researchers leverage the vast and increasing body of biomedical literature. While several biomedical relation extraction systems have been created and tested, little work has been done to meaningfully organize the extracted relations. Organizational processes should consolidate multiple references to the same objects over various levels of granularity, connect those references to other resources, and capture contextual information. We propose a feature decomposition approach to relation aggregation to support a five-level aggregation framework. Our BioAggregate tagger uses this approach to identify key features in extracted relation name strings. We show encouraging feature assignment accuracy and report substantial consolidation in a network of extracted relations</description><subject>Abstracts</subject><subject>Algorithm design and analysis</subject><subject>Artificial Intelligence</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Information analysis</subject><subject>Information Storage and Retrieval - methods</subject><subject>Knowledge representation</subject><subject>Models, Biological</subject><subject>Natural Language Processing</subject><subject>Object recognition</subject><subject>Organizing</subject><subject>Pattern Recognition, Automated</subject><subject>Proteome - metabolism</subject><subject>regulatory pathway analysis</subject><subject>relation parsing</subject><subject>Signal Transduction - physiology</subject><subject>Spatial databases</subject><subject>System testing</subject><subject>Visualization</subject><subject>Vocabulary, Controlled</subject><issn>1089-7771</issn><issn>2168-2194</issn><issn>1558-0032</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtLw0AUhQdRbK3uBUGKC12lzvuxsxYfhYKbuh4myUxMSZs6k6D5905JoeBCF5d7ufOdM3APAJcIThCC6n45Xz5OMIRsIhmXTByBIWJMJhASfBxnKFUihEADcBbCCkJEGSKnYIA4pQwzNgQP06LwtjBNuSnGpm3qdRwzU1Xd2H433mSNzccRaCvT1L4bb03z8WW6uIqLst6Ec3DiTBXsxb6PwPvz03L2mizeXuaz6SLJKJFNohiiOSFOUoed4gwyISTFXKUKO865y5XMCMfKOsJT5lKbmVjMGg5zzFMyAne979bXn60NjV6XIbNVZTa2boOWgiIliFSRvP2TFFDEj-OJ_gOxhFhI9L8jUhQrQkQEb36Bq7r1m3gXLTnjAiImIwR7KPN1CN46vfXl2vhOI6h3sepdrHoXq-5jjZLrvW-brm1-EOxzjMBVD5TW2sNzlAqEyQ8kbaWN</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Marshall, B.</creator><creator>Hua Su</creator><creator>McDonald, D.</creator><creator>Eggers, S.</creator><creator>Chen, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200601</creationdate><title>Aggregating automatically extracted regulatory pathway relations</title><author>Marshall, B. ; Hua Su ; McDonald, D. ; Eggers, S. ; Chen, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-9514d33f84f2f965057784269b92f666fd98c3629ef36b5fbecabec5ea60d26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Abstracts</topic><topic>Algorithm design and analysis</topic><topic>Artificial Intelligence</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Information analysis</topic><topic>Information Storage and Retrieval - methods</topic><topic>Knowledge representation</topic><topic>Models, Biological</topic><topic>Natural Language Processing</topic><topic>Object recognition</topic><topic>Organizing</topic><topic>Pattern Recognition, Automated</topic><topic>Proteome - metabolism</topic><topic>regulatory pathway analysis</topic><topic>relation parsing</topic><topic>Signal Transduction - physiology</topic><topic>Spatial databases</topic><topic>System testing</topic><topic>Visualization</topic><topic>Vocabulary, Controlled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, B.</creatorcontrib><creatorcontrib>Hua Su</creatorcontrib><creatorcontrib>McDonald, D.</creatorcontrib><creatorcontrib>Eggers, S.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marshall, B.</au><au>Hua Su</au><au>McDonald, D.</au><au>Eggers, S.</au><au>Chen, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregating automatically extracted regulatory pathway relations</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>TITB</stitle><addtitle>IEEE Trans Inf Technol Biomed</addtitle><date>2006-01</date><risdate>2006</risdate><volume>10</volume><issue>1</issue><spage>100</spage><epage>108</epage><pages>100-108</pages><issn>1089-7771</issn><issn>2168-2194</issn><eissn>1558-0032</eissn><eissn>2168-2208</eissn><coden>ITIBFX</coden><abstract>Automatic tools to extract information from biomedical texts are needed to help researchers leverage the vast and increasing body of biomedical literature. While several biomedical relation extraction systems have been created and tested, little work has been done to meaningfully organize the extracted relations. Organizational processes should consolidate multiple references to the same objects over various levels of granularity, connect those references to other resources, and capture contextual information. We propose a feature decomposition approach to relation aggregation to support a five-level aggregation framework. Our BioAggregate tagger uses this approach to identify key features in extracted relation name strings. We show encouraging feature assignment accuracy and report substantial consolidation in a network of extracted relations</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16445255</pmid><doi>10.1109/TITB.2005.856857</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7771 |
ispartof | IEEE journal of biomedical and health informatics, 2006-01, Vol.10 (1), p.100-108 |
issn | 1089-7771 2168-2194 1558-0032 2168-2208 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITB_2005_856857 |
source | IEEE Electronic Library (IEL) |
subjects | Abstracts Algorithm design and analysis Artificial Intelligence Data mining Feature extraction Information analysis Information Storage and Retrieval - methods Knowledge representation Models, Biological Natural Language Processing Object recognition Organizing Pattern Recognition, Automated Proteome - metabolism regulatory pathway analysis relation parsing Signal Transduction - physiology Spatial databases System testing Visualization Vocabulary, Controlled |
title | Aggregating automatically extracted regulatory pathway relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregating%20automatically%20extracted%20regulatory%20pathway%20relations&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Marshall,%20B.&rft.date=2006-01&rft.volume=10&rft.issue=1&rft.spage=100&rft.epage=108&rft.pages=100-108&rft.issn=1089-7771&rft.eissn=1558-0032&rft.coden=ITIBFX&rft_id=info:doi/10.1109/TITB.2005.856857&rft_dat=%3Cproquest_RIE%3E2342543831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865670158&rft_id=info:pmid/16445255&rft_ieee_id=1573712&rfr_iscdi=true |