Uncertainty-Aware Active Domain Adaptive Salient Object Detection
Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and un...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2024, Vol.33, p.5510-5524 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5524 |
---|---|
container_issue | |
container_start_page | 5510 |
container_title | IEEE transactions on image processing |
container_volume | 33 |
creator | Li, Guanbin Chen, Zhuohua Mao, Mingzhi Lin, Liang Fang, Chaowei |
description | Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and unsupervised SOD methods have been proposed, yet the performance gap between them and fully supervised methods remains significant. In this paper, we propose a novel, cost-efficient salient object detection framework, which can adapt models from synthetic data to real-world data with the help of a limited number of actively selected annotations. Specifically, we first construct a synthetic SOD dataset by copying and pasting foreground objects into pure background images. With the masks of foreground objects taken as the ground-truth saliency maps, this dataset can be used for training the SOD model initially. However, due to the large domain gap between synthetic images and real-world images, the performance of the initially trained model on the real-world images is deficient. To transfer the model from the synthetic dataset to the real-world datasets, we further design an uncertainty-aware active domain adaptive algorithm to generate labels for the real-world target images. The prediction variances against data augmentations are utilized to calculate the superpixel-level uncertainty values. For those superpixels with relatively low uncertainty, we directly generate pseudo labels according to the network predictions. Meanwhile, we select a few superpixels with high uncertainty scores and assign labels to them manually. This labeling strategy is capable of generating high-quality labels without incurring too much annotation cost. Experimental results on six benchmark SOD datasets demonstrate that our method outperforms the existing state-of-the-art weakly-supervised and unsupervised SOD methods and is even comparable to the fully supervised ones. Code will be released at: https://github.com/czh-3/UADA . |
doi_str_mv | 10.1109/TIP.2024.3413598 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2024_3413598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10562209</ieee_id><sourcerecordid>3070795330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-fc91f7207607dac3ab3fb993c1ce98d16d6449cdb5c9db3f8fd5766f4be8eea13</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRbK3ePYgEvHhJndndPPYYWh-FQgXb87LZTCAlj5qkSv97t7aKeJqZ3W9-DB9j1whjRFAPy9nrmAOXYyFRBCo-YUNUEn0AyU9dD0HkRyjVgF103RoAZYDhORuIOI4VYDBkyaq21PamqPudn3yalrzE9sUHedOmcq9ekpnN9_xmyoLq3luka7K9N6XelaKpL9lZbsqOro51xFZPj8vJiz9fPM8mydy3XGDv51ZhHnGIQogyY4VJRZ4qJSxaUnGGYRZKqWyWBlZl7i_OsyAKw1ymFBMZFCN2f8jdtM37lrpeV0VnqSxNTc220wIiiFQgBDj07h-6brZt7a7TApErrkCGjoIDZdum61rK9aYtKtPuNILe69VOr97r1Ue9buX2GLxNK8p-F358OuDmABRE9CcvCDkHJb4A5OJ9sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112929046</pqid></control><display><type>article</type><title>Uncertainty-Aware Active Domain Adaptive Salient Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Guanbin ; Chen, Zhuohua ; Mao, Mingzhi ; Lin, Liang ; Fang, Chaowei</creator><creatorcontrib>Li, Guanbin ; Chen, Zhuohua ; Mao, Mingzhi ; Lin, Liang ; Fang, Chaowei</creatorcontrib><description>Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and unsupervised SOD methods have been proposed, yet the performance gap between them and fully supervised methods remains significant. In this paper, we propose a novel, cost-efficient salient object detection framework, which can adapt models from synthetic data to real-world data with the help of a limited number of actively selected annotations. Specifically, we first construct a synthetic SOD dataset by copying and pasting foreground objects into pure background images. With the masks of foreground objects taken as the ground-truth saliency maps, this dataset can be used for training the SOD model initially. However, due to the large domain gap between synthetic images and real-world images, the performance of the initially trained model on the real-world images is deficient. To transfer the model from the synthetic dataset to the real-world datasets, we further design an uncertainty-aware active domain adaptive algorithm to generate labels for the real-world target images. The prediction variances against data augmentations are utilized to calculate the superpixel-level uncertainty values. For those superpixels with relatively low uncertainty, we directly generate pseudo labels according to the network predictions. Meanwhile, we select a few superpixels with high uncertainty scores and assign labels to them manually. This labeling strategy is capable of generating high-quality labels without incurring too much annotation cost. Experimental results on six benchmark SOD datasets demonstrate that our method outperforms the existing state-of-the-art weakly-supervised and unsupervised SOD methods and is even comparable to the fully supervised ones. Code will be released at: https://github.com/czh-3/UADA .</description><identifier>ISSN: 1057-7149</identifier><identifier>ISSN: 1941-0042</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3413598</identifier><identifier>PMID: 38889015</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>active learning ; Adaptation models ; Adaptive algorithms ; Annotations ; Copying ; Data augmentation ; Datasets ; Deep learning ; domain adaptation ; Labeling ; Labels ; Machine learning ; Object detection ; Object recognition ; Salience ; Salient object detection ; Synthetic data ; Training ; Uncertainty ; Unsupervised learning</subject><ispartof>IEEE transactions on image processing, 2024, Vol.33, p.5510-5524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c231t-fc91f7207607dac3ab3fb993c1ce98d16d6449cdb5c9db3f8fd5766f4be8eea13</cites><orcidid>0000-0002-4805-0926 ; 0000-0001-8805-9792 ; 0009-0004-8480-1346 ; 0000-0001-9369-7828 ; 0000-0003-2248-3755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10562209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10562209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38889015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Chen, Zhuohua</creatorcontrib><creatorcontrib>Mao, Mingzhi</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><creatorcontrib>Fang, Chaowei</creatorcontrib><title>Uncertainty-Aware Active Domain Adaptive Salient Object Detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and unsupervised SOD methods have been proposed, yet the performance gap between them and fully supervised methods remains significant. In this paper, we propose a novel, cost-efficient salient object detection framework, which can adapt models from synthetic data to real-world data with the help of a limited number of actively selected annotations. Specifically, we first construct a synthetic SOD dataset by copying and pasting foreground objects into pure background images. With the masks of foreground objects taken as the ground-truth saliency maps, this dataset can be used for training the SOD model initially. However, due to the large domain gap between synthetic images and real-world images, the performance of the initially trained model on the real-world images is deficient. To transfer the model from the synthetic dataset to the real-world datasets, we further design an uncertainty-aware active domain adaptive algorithm to generate labels for the real-world target images. The prediction variances against data augmentations are utilized to calculate the superpixel-level uncertainty values. For those superpixels with relatively low uncertainty, we directly generate pseudo labels according to the network predictions. Meanwhile, we select a few superpixels with high uncertainty scores and assign labels to them manually. This labeling strategy is capable of generating high-quality labels without incurring too much annotation cost. Experimental results on six benchmark SOD datasets demonstrate that our method outperforms the existing state-of-the-art weakly-supervised and unsupervised SOD methods and is even comparable to the fully supervised ones. Code will be released at: https://github.com/czh-3/UADA .</description><subject>active learning</subject><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Annotations</subject><subject>Copying</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>domain adaptation</subject><subject>Labeling</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Salience</subject><subject>Salient object detection</subject><subject>Synthetic data</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Unsupervised learning</subject><issn>1057-7149</issn><issn>1941-0042</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLw0AQhxdRbK3ePYgEvHhJndndPPYYWh-FQgXb87LZTCAlj5qkSv97t7aKeJqZ3W9-DB9j1whjRFAPy9nrmAOXYyFRBCo-YUNUEn0AyU9dD0HkRyjVgF103RoAZYDhORuIOI4VYDBkyaq21PamqPudn3yalrzE9sUHedOmcq9ekpnN9_xmyoLq3luka7K9N6XelaKpL9lZbsqOro51xFZPj8vJiz9fPM8mydy3XGDv51ZhHnGIQogyY4VJRZ4qJSxaUnGGYRZKqWyWBlZl7i_OsyAKw1ymFBMZFCN2f8jdtM37lrpeV0VnqSxNTc220wIiiFQgBDj07h-6brZt7a7TApErrkCGjoIDZdum61rK9aYtKtPuNILe69VOr97r1Ue9buX2GLxNK8p-F358OuDmABRE9CcvCDkHJb4A5OJ9sQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Guanbin</creator><creator>Chen, Zhuohua</creator><creator>Mao, Mingzhi</creator><creator>Lin, Liang</creator><creator>Fang, Chaowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0001-8805-9792</orcidid><orcidid>https://orcid.org/0009-0004-8480-1346</orcidid><orcidid>https://orcid.org/0000-0001-9369-7828</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid></search><sort><creationdate>2024</creationdate><title>Uncertainty-Aware Active Domain Adaptive Salient Object Detection</title><author>Li, Guanbin ; Chen, Zhuohua ; Mao, Mingzhi ; Lin, Liang ; Fang, Chaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-fc91f7207607dac3ab3fb993c1ce98d16d6449cdb5c9db3f8fd5766f4be8eea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active learning</topic><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Annotations</topic><topic>Copying</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>domain adaptation</topic><topic>Labeling</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Salience</topic><topic>Salient object detection</topic><topic>Synthetic data</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Chen, Zhuohua</creatorcontrib><creatorcontrib>Mao, Mingzhi</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><creatorcontrib>Fang, Chaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Guanbin</au><au>Chen, Zhuohua</au><au>Mao, Mingzhi</au><au>Lin, Liang</au><au>Fang, Chaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty-Aware Active Domain Adaptive Salient Object Detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024</date><risdate>2024</risdate><volume>33</volume><spage>5510</spage><epage>5524</epage><pages>5510-5524</pages><issn>1057-7149</issn><issn>1941-0042</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and unsupervised SOD methods have been proposed, yet the performance gap between them and fully supervised methods remains significant. In this paper, we propose a novel, cost-efficient salient object detection framework, which can adapt models from synthetic data to real-world data with the help of a limited number of actively selected annotations. Specifically, we first construct a synthetic SOD dataset by copying and pasting foreground objects into pure background images. With the masks of foreground objects taken as the ground-truth saliency maps, this dataset can be used for training the SOD model initially. However, due to the large domain gap between synthetic images and real-world images, the performance of the initially trained model on the real-world images is deficient. To transfer the model from the synthetic dataset to the real-world datasets, we further design an uncertainty-aware active domain adaptive algorithm to generate labels for the real-world target images. The prediction variances against data augmentations are utilized to calculate the superpixel-level uncertainty values. For those superpixels with relatively low uncertainty, we directly generate pseudo labels according to the network predictions. Meanwhile, we select a few superpixels with high uncertainty scores and assign labels to them manually. This labeling strategy is capable of generating high-quality labels without incurring too much annotation cost. Experimental results on six benchmark SOD datasets demonstrate that our method outperforms the existing state-of-the-art weakly-supervised and unsupervised SOD methods and is even comparable to the fully supervised ones. Code will be released at: https://github.com/czh-3/UADA .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38889015</pmid><doi>10.1109/TIP.2024.3413598</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0001-8805-9792</orcidid><orcidid>https://orcid.org/0009-0004-8480-1346</orcidid><orcidid>https://orcid.org/0000-0001-9369-7828</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2024, Vol.33, p.5510-5524 |
issn | 1057-7149 1941-0042 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2024_3413598 |
source | IEEE Electronic Library (IEL) |
subjects | active learning Adaptation models Adaptive algorithms Annotations Copying Data augmentation Datasets Deep learning domain adaptation Labeling Labels Machine learning Object detection Object recognition Salience Salient object detection Synthetic data Training Uncertainty Unsupervised learning |
title | Uncertainty-Aware Active Domain Adaptive Salient Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty-Aware%20Active%20Domain%20Adaptive%20Salient%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Guanbin&rft.date=2024&rft.volume=33&rft.spage=5510&rft.epage=5524&rft.pages=5510-5524&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3413598&rft_dat=%3Cproquest_RIE%3E3070795330%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112929046&rft_id=info:pmid/38889015&rft_ieee_id=10562209&rfr_iscdi=true |