Uncertainty-Aware Active Domain Adaptive Salient Object Detection

Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2024, Vol.33, p.5510-5524
Hauptverfasser: Li, Guanbin, Chen, Zhuohua, Mao, Mingzhi, Lin, Liang, Fang, Chaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5524
container_issue
container_start_page 5510
container_title IEEE transactions on image processing
container_volume 33
creator Li, Guanbin
Chen, Zhuohua
Mao, Mingzhi
Lin, Liang
Fang, Chaowei
description Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and unsupervised SOD methods have been proposed, yet the performance gap between them and fully supervised methods remains significant. In this paper, we propose a novel, cost-efficient salient object detection framework, which can adapt models from synthetic data to real-world data with the help of a limited number of actively selected annotations. Specifically, we first construct a synthetic SOD dataset by copying and pasting foreground objects into pure background images. With the masks of foreground objects taken as the ground-truth saliency maps, this dataset can be used for training the SOD model initially. However, due to the large domain gap between synthetic images and real-world images, the performance of the initially trained model on the real-world images is deficient. To transfer the model from the synthetic dataset to the real-world datasets, we further design an uncertainty-aware active domain adaptive algorithm to generate labels for the real-world target images. The prediction variances against data augmentations are utilized to calculate the superpixel-level uncertainty values. For those superpixels with relatively low uncertainty, we directly generate pseudo labels according to the network predictions. Meanwhile, we select a few superpixels with high uncertainty scores and assign labels to them manually. This labeling strategy is capable of generating high-quality labels without incurring too much annotation cost. Experimental results on six benchmark SOD datasets demonstrate that our method outperforms the existing state-of-the-art weakly-supervised and unsupervised SOD methods and is even comparable to the fully supervised ones. Code will be released at: https://github.com/czh-3/UADA .
doi_str_mv 10.1109/TIP.2024.3413598
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2024_3413598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10562209</ieee_id><sourcerecordid>3070795330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-fc91f7207607dac3ab3fb993c1ce98d16d6449cdb5c9db3f8fd5766f4be8eea13</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRbK3ePYgEvHhJndndPPYYWh-FQgXb87LZTCAlj5qkSv97t7aKeJqZ3W9-DB9j1whjRFAPy9nrmAOXYyFRBCo-YUNUEn0AyU9dD0HkRyjVgF103RoAZYDhORuIOI4VYDBkyaq21PamqPudn3yalrzE9sUHedOmcq9ekpnN9_xmyoLq3luka7K9N6XelaKpL9lZbsqOro51xFZPj8vJiz9fPM8mydy3XGDv51ZhHnGIQogyY4VJRZ4qJSxaUnGGYRZKqWyWBlZl7i_OsyAKw1ymFBMZFCN2f8jdtM37lrpeV0VnqSxNTc220wIiiFQgBDj07h-6brZt7a7TApErrkCGjoIDZdum61rK9aYtKtPuNILe69VOr97r1Ue9buX2GLxNK8p-F358OuDmABRE9CcvCDkHJb4A5OJ9sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112929046</pqid></control><display><type>article</type><title>Uncertainty-Aware Active Domain Adaptive Salient Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Guanbin ; Chen, Zhuohua ; Mao, Mingzhi ; Lin, Liang ; Fang, Chaowei</creator><creatorcontrib>Li, Guanbin ; Chen, Zhuohua ; Mao, Mingzhi ; Lin, Liang ; Fang, Chaowei</creatorcontrib><description>Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and unsupervised SOD methods have been proposed, yet the performance gap between them and fully supervised methods remains significant. In this paper, we propose a novel, cost-efficient salient object detection framework, which can adapt models from synthetic data to real-world data with the help of a limited number of actively selected annotations. Specifically, we first construct a synthetic SOD dataset by copying and pasting foreground objects into pure background images. With the masks of foreground objects taken as the ground-truth saliency maps, this dataset can be used for training the SOD model initially. However, due to the large domain gap between synthetic images and real-world images, the performance of the initially trained model on the real-world images is deficient. To transfer the model from the synthetic dataset to the real-world datasets, we further design an uncertainty-aware active domain adaptive algorithm to generate labels for the real-world target images. The prediction variances against data augmentations are utilized to calculate the superpixel-level uncertainty values. For those superpixels with relatively low uncertainty, we directly generate pseudo labels according to the network predictions. Meanwhile, we select a few superpixels with high uncertainty scores and assign labels to them manually. This labeling strategy is capable of generating high-quality labels without incurring too much annotation cost. Experimental results on six benchmark SOD datasets demonstrate that our method outperforms the existing state-of-the-art weakly-supervised and unsupervised SOD methods and is even comparable to the fully supervised ones. Code will be released at: https://github.com/czh-3/UADA .</description><identifier>ISSN: 1057-7149</identifier><identifier>ISSN: 1941-0042</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3413598</identifier><identifier>PMID: 38889015</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>active learning ; Adaptation models ; Adaptive algorithms ; Annotations ; Copying ; Data augmentation ; Datasets ; Deep learning ; domain adaptation ; Labeling ; Labels ; Machine learning ; Object detection ; Object recognition ; Salience ; Salient object detection ; Synthetic data ; Training ; Uncertainty ; Unsupervised learning</subject><ispartof>IEEE transactions on image processing, 2024, Vol.33, p.5510-5524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c231t-fc91f7207607dac3ab3fb993c1ce98d16d6449cdb5c9db3f8fd5766f4be8eea13</cites><orcidid>0000-0002-4805-0926 ; 0000-0001-8805-9792 ; 0009-0004-8480-1346 ; 0000-0001-9369-7828 ; 0000-0003-2248-3755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10562209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10562209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38889015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Chen, Zhuohua</creatorcontrib><creatorcontrib>Mao, Mingzhi</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><creatorcontrib>Fang, Chaowei</creatorcontrib><title>Uncertainty-Aware Active Domain Adaptive Salient Object Detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and unsupervised SOD methods have been proposed, yet the performance gap between them and fully supervised methods remains significant. In this paper, we propose a novel, cost-efficient salient object detection framework, which can adapt models from synthetic data to real-world data with the help of a limited number of actively selected annotations. Specifically, we first construct a synthetic SOD dataset by copying and pasting foreground objects into pure background images. With the masks of foreground objects taken as the ground-truth saliency maps, this dataset can be used for training the SOD model initially. However, due to the large domain gap between synthetic images and real-world images, the performance of the initially trained model on the real-world images is deficient. To transfer the model from the synthetic dataset to the real-world datasets, we further design an uncertainty-aware active domain adaptive algorithm to generate labels for the real-world target images. The prediction variances against data augmentations are utilized to calculate the superpixel-level uncertainty values. For those superpixels with relatively low uncertainty, we directly generate pseudo labels according to the network predictions. Meanwhile, we select a few superpixels with high uncertainty scores and assign labels to them manually. This labeling strategy is capable of generating high-quality labels without incurring too much annotation cost. Experimental results on six benchmark SOD datasets demonstrate that our method outperforms the existing state-of-the-art weakly-supervised and unsupervised SOD methods and is even comparable to the fully supervised ones. Code will be released at: https://github.com/czh-3/UADA .</description><subject>active learning</subject><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Annotations</subject><subject>Copying</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>domain adaptation</subject><subject>Labeling</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Salience</subject><subject>Salient object detection</subject><subject>Synthetic data</subject><subject>Training</subject><subject>Uncertainty</subject><subject>Unsupervised learning</subject><issn>1057-7149</issn><issn>1941-0042</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLw0AQhxdRbK3ePYgEvHhJndndPPYYWh-FQgXb87LZTCAlj5qkSv97t7aKeJqZ3W9-DB9j1whjRFAPy9nrmAOXYyFRBCo-YUNUEn0AyU9dD0HkRyjVgF103RoAZYDhORuIOI4VYDBkyaq21PamqPudn3yalrzE9sUHedOmcq9ekpnN9_xmyoLq3luka7K9N6XelaKpL9lZbsqOro51xFZPj8vJiz9fPM8mydy3XGDv51ZhHnGIQogyY4VJRZ4qJSxaUnGGYRZKqWyWBlZl7i_OsyAKw1ymFBMZFCN2f8jdtM37lrpeV0VnqSxNTc220wIiiFQgBDj07h-6brZt7a7TApErrkCGjoIDZdum61rK9aYtKtPuNILe69VOr97r1Ue9buX2GLxNK8p-F358OuDmABRE9CcvCDkHJb4A5OJ9sQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Guanbin</creator><creator>Chen, Zhuohua</creator><creator>Mao, Mingzhi</creator><creator>Lin, Liang</creator><creator>Fang, Chaowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0001-8805-9792</orcidid><orcidid>https://orcid.org/0009-0004-8480-1346</orcidid><orcidid>https://orcid.org/0000-0001-9369-7828</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid></search><sort><creationdate>2024</creationdate><title>Uncertainty-Aware Active Domain Adaptive Salient Object Detection</title><author>Li, Guanbin ; Chen, Zhuohua ; Mao, Mingzhi ; Lin, Liang ; Fang, Chaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-fc91f7207607dac3ab3fb993c1ce98d16d6449cdb5c9db3f8fd5766f4be8eea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active learning</topic><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Annotations</topic><topic>Copying</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>domain adaptation</topic><topic>Labeling</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Salience</topic><topic>Salient object detection</topic><topic>Synthetic data</topic><topic>Training</topic><topic>Uncertainty</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guanbin</creatorcontrib><creatorcontrib>Chen, Zhuohua</creatorcontrib><creatorcontrib>Mao, Mingzhi</creatorcontrib><creatorcontrib>Lin, Liang</creatorcontrib><creatorcontrib>Fang, Chaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Guanbin</au><au>Chen, Zhuohua</au><au>Mao, Mingzhi</au><au>Lin, Liang</au><au>Fang, Chaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty-Aware Active Domain Adaptive Salient Object Detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024</date><risdate>2024</risdate><volume>33</volume><spage>5510</spage><epage>5524</epage><pages>5510-5524</pages><issn>1057-7149</issn><issn>1941-0042</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Due to the advancement of deep learning, the performance of salient object detection (SOD) has been significantly improved. However, deep learning-based techniques require a sizable amount of pixel-wise annotations. To relieve the burden of data annotation, a variety of deep weakly-supervised and unsupervised SOD methods have been proposed, yet the performance gap between them and fully supervised methods remains significant. In this paper, we propose a novel, cost-efficient salient object detection framework, which can adapt models from synthetic data to real-world data with the help of a limited number of actively selected annotations. Specifically, we first construct a synthetic SOD dataset by copying and pasting foreground objects into pure background images. With the masks of foreground objects taken as the ground-truth saliency maps, this dataset can be used for training the SOD model initially. However, due to the large domain gap between synthetic images and real-world images, the performance of the initially trained model on the real-world images is deficient. To transfer the model from the synthetic dataset to the real-world datasets, we further design an uncertainty-aware active domain adaptive algorithm to generate labels for the real-world target images. The prediction variances against data augmentations are utilized to calculate the superpixel-level uncertainty values. For those superpixels with relatively low uncertainty, we directly generate pseudo labels according to the network predictions. Meanwhile, we select a few superpixels with high uncertainty scores and assign labels to them manually. This labeling strategy is capable of generating high-quality labels without incurring too much annotation cost. Experimental results on six benchmark SOD datasets demonstrate that our method outperforms the existing state-of-the-art weakly-supervised and unsupervised SOD methods and is even comparable to the fully supervised ones. Code will be released at: https://github.com/czh-3/UADA .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38889015</pmid><doi>10.1109/TIP.2024.3413598</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4805-0926</orcidid><orcidid>https://orcid.org/0000-0001-8805-9792</orcidid><orcidid>https://orcid.org/0009-0004-8480-1346</orcidid><orcidid>https://orcid.org/0000-0001-9369-7828</orcidid><orcidid>https://orcid.org/0000-0003-2248-3755</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2024, Vol.33, p.5510-5524
issn 1057-7149
1941-0042
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2024_3413598
source IEEE Electronic Library (IEL)
subjects active learning
Adaptation models
Adaptive algorithms
Annotations
Copying
Data augmentation
Datasets
Deep learning
domain adaptation
Labeling
Labels
Machine learning
Object detection
Object recognition
Salience
Salient object detection
Synthetic data
Training
Uncertainty
Unsupervised learning
title Uncertainty-Aware Active Domain Adaptive Salient Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty-Aware%20Active%20Domain%20Adaptive%20Salient%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Guanbin&rft.date=2024&rft.volume=33&rft.spage=5510&rft.epage=5524&rft.pages=5510-5524&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3413598&rft_dat=%3Cproquest_RIE%3E3070795330%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112929046&rft_id=info:pmid/38889015&rft_ieee_id=10562209&rfr_iscdi=true