Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation

Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The spars...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2023-01, Vol.32, p.1-1
Hauptverfasser: Li, Shenghao, Zhao, Qunfei, Xia, Zeyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume 32
creator Li, Shenghao
Zhao, Qunfei
Xia, Zeyang
description Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The sparse-to-local-dense matching asymmetrically establishes correspondences with consistent sub-pixel coordinates while reducing the computation of matching. The salient features are explicitly located, and the description is conditioned on both views with the global receptive field provided by the attention mechanism. The correspondences are progressively established in multiple levels to reduce the underlying re-projection error. We further propose a 3D noise-aware regularizer with differentiable triangulation. Additional guidance from 3D space is encoded by the regularizer in training to handle the supervision noise caused by the errors in camera poses and depth maps. The proposed method demonstrates outstanding matching accuracy and geometric estimation capability on multiple datasets and tasks.
doi_str_mv 10.1109/TIP.2023.3287500
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2023_3287500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10159656</ieee_id><sourcerecordid>2829429097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-27740cf50d2ec8f241862b79e318382bf6ad2ede0e57cdfc8c4d0aedf90042223</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvHkQWvHhJnXzsZnOUWmuhomA9L9tkVre0m5rsHvrvTWkV8TQD88zLzEPIJYMhY6Dv5tPXIQcuhoLnKgU4In2mJaMAkh_HHlJFFZO6R85CWAIwmbLslPSEElJlIuuT2dum9AFp6-jMmXJFH7AJmDyXrfmsm4-kcj6ZoFtj67d00tUWbTJy3mPYuMZiYzAZh7Zel23tmnNyUpWrgBeHOiDvj-P56InOXibT0f2MGiHzlnKlJJgqBcvR5BWXLM_4QmkULBc5X1RZGScWAVNlbGVyIy2UaCu9-4tzMSC3-9yNd18dhrZY18HgalU26LpQ8JxryTVoFdGbf-jSdb6J10VKsHQXJyIFe8p4F4LHqtj4-JPfFgyKnekimi52pouD6bhyfQjuFmu0vws_aiNwtQdqRPyTx1KdpZn4BtXsgSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831522233</pqid></control><display><type>article</type><title>Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Shenghao ; Zhao, Qunfei ; Xia, Zeyang</creator><creatorcontrib>Li, Shenghao ; Zhao, Qunfei ; Xia, Zeyang</creatorcontrib><description>Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The sparse-to-local-dense matching asymmetrically establishes correspondences with consistent sub-pixel coordinates while reducing the computation of matching. The salient features are explicitly located, and the description is conditioned on both views with the global receptive field provided by the attention mechanism. The correspondences are progressively established in multiple levels to reduce the underlying re-projection error. We further propose a 3D noise-aware regularizer with differentiable triangulation. Additional guidance from 3D space is encoded by the regularizer in training to handle the supervision noise caused by the errors in camera poses and depth maps. The proposed method demonstrates outstanding matching accuracy and geometric estimation capability on multiple datasets and tasks.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3287500</identifier><identifier>PMID: 37347636</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cameras ; Correspondence Estimation ; Device-to-device communication ; Epipolar Geometry ; Estimation ; Feature detection ; Feature extraction ; Geometric accuracy ; Geometry ; Local Feature ; Matching ; Transformer ; Triangulation ; Visualization</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-27740cf50d2ec8f241862b79e318382bf6ad2ede0e57cdfc8c4d0aedf90042223</citedby><cites>FETCH-LOGICAL-c348t-27740cf50d2ec8f241862b79e318382bf6ad2ede0e57cdfc8c4d0aedf90042223</cites><orcidid>0000-0002-8968-7333 ; 0000-0002-9882-730X ; 0000-0002-0075-7949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10159656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10159656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37347636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shenghao</creatorcontrib><creatorcontrib>Zhao, Qunfei</creatorcontrib><creatorcontrib>Xia, Zeyang</creatorcontrib><title>Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The sparse-to-local-dense matching asymmetrically establishes correspondences with consistent sub-pixel coordinates while reducing the computation of matching. The salient features are explicitly located, and the description is conditioned on both views with the global receptive field provided by the attention mechanism. The correspondences are progressively established in multiple levels to reduce the underlying re-projection error. We further propose a 3D noise-aware regularizer with differentiable triangulation. Additional guidance from 3D space is encoded by the regularizer in training to handle the supervision noise caused by the errors in camera poses and depth maps. The proposed method demonstrates outstanding matching accuracy and geometric estimation capability on multiple datasets and tasks.</description><subject>Cameras</subject><subject>Correspondence Estimation</subject><subject>Device-to-device communication</subject><subject>Epipolar Geometry</subject><subject>Estimation</subject><subject>Feature detection</subject><subject>Feature extraction</subject><subject>Geometric accuracy</subject><subject>Geometry</subject><subject>Local Feature</subject><subject>Matching</subject><subject>Transformer</subject><subject>Triangulation</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMotlbvHkQWvHhJnXzsZnOUWmuhomA9L9tkVre0m5rsHvrvTWkV8TQD88zLzEPIJYMhY6Dv5tPXIQcuhoLnKgU4In2mJaMAkh_HHlJFFZO6R85CWAIwmbLslPSEElJlIuuT2dum9AFp6-jMmXJFH7AJmDyXrfmsm4-kcj6ZoFtj67d00tUWbTJy3mPYuMZiYzAZh7Zel23tmnNyUpWrgBeHOiDvj-P56InOXibT0f2MGiHzlnKlJJgqBcvR5BWXLM_4QmkULBc5X1RZGScWAVNlbGVyIy2UaCu9-4tzMSC3-9yNd18dhrZY18HgalU26LpQ8JxryTVoFdGbf-jSdb6J10VKsHQXJyIFe8p4F4LHqtj4-JPfFgyKnekimi52pouD6bhyfQjuFmu0vws_aiNwtQdqRPyTx1KdpZn4BtXsgSk</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Shenghao</creator><creator>Zhao, Qunfei</creator><creator>Xia, Zeyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8968-7333</orcidid><orcidid>https://orcid.org/0000-0002-9882-730X</orcidid><orcidid>https://orcid.org/0000-0002-0075-7949</orcidid></search><sort><creationdate>20230101</creationdate><title>Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation</title><author>Li, Shenghao ; Zhao, Qunfei ; Xia, Zeyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-27740cf50d2ec8f241862b79e318382bf6ad2ede0e57cdfc8c4d0aedf90042223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Correspondence Estimation</topic><topic>Device-to-device communication</topic><topic>Epipolar Geometry</topic><topic>Estimation</topic><topic>Feature detection</topic><topic>Feature extraction</topic><topic>Geometric accuracy</topic><topic>Geometry</topic><topic>Local Feature</topic><topic>Matching</topic><topic>Transformer</topic><topic>Triangulation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shenghao</creatorcontrib><creatorcontrib>Zhao, Qunfei</creatorcontrib><creatorcontrib>Xia, Zeyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shenghao</au><au>Zhao, Qunfei</au><au>Xia, Zeyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The sparse-to-local-dense matching asymmetrically establishes correspondences with consistent sub-pixel coordinates while reducing the computation of matching. The salient features are explicitly located, and the description is conditioned on both views with the global receptive field provided by the attention mechanism. The correspondences are progressively established in multiple levels to reduce the underlying re-projection error. We further propose a 3D noise-aware regularizer with differentiable triangulation. Additional guidance from 3D space is encoded by the regularizer in training to handle the supervision noise caused by the errors in camera poses and depth maps. The proposed method demonstrates outstanding matching accuracy and geometric estimation capability on multiple datasets and tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37347636</pmid><doi>10.1109/TIP.2023.3287500</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8968-7333</orcidid><orcidid>https://orcid.org/0000-0002-9882-730X</orcidid><orcidid>https://orcid.org/0000-0002-0075-7949</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2023-01, Vol.32, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2023_3287500
source IEEE Electronic Library (IEL)
subjects Cameras
Correspondence Estimation
Device-to-device communication
Epipolar Geometry
Estimation
Feature detection
Feature extraction
Geometric accuracy
Geometry
Local Feature
Matching
Transformer
Triangulation
Visualization
title Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse-to-Local-Dense%20Matching%20for%20Geometry-Guided%20Correspondence%20Estimation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Shenghao&rft.date=2023-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3287500&rft_dat=%3Cproquest_RIE%3E2829429097%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831522233&rft_id=info:pmid/37347636&rft_ieee_id=10159656&rfr_iscdi=true