Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation
Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The spars...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023-01, Vol.32, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on image processing |
container_volume | 32 |
creator | Li, Shenghao Zhao, Qunfei Xia, Zeyang |
description | Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The sparse-to-local-dense matching asymmetrically establishes correspondences with consistent sub-pixel coordinates while reducing the computation of matching. The salient features are explicitly located, and the description is conditioned on both views with the global receptive field provided by the attention mechanism. The correspondences are progressively established in multiple levels to reduce the underlying re-projection error. We further propose a 3D noise-aware regularizer with differentiable triangulation. Additional guidance from 3D space is encoded by the regularizer in training to handle the supervision noise caused by the errors in camera poses and depth maps. The proposed method demonstrates outstanding matching accuracy and geometric estimation capability on multiple datasets and tasks. |
doi_str_mv | 10.1109/TIP.2023.3287500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2023_3287500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10159656</ieee_id><sourcerecordid>2829429097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-27740cf50d2ec8f241862b79e318382bf6ad2ede0e57cdfc8c4d0aedf90042223</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvHkQWvHhJnXzsZnOUWmuhomA9L9tkVre0m5rsHvrvTWkV8TQD88zLzEPIJYMhY6Dv5tPXIQcuhoLnKgU4In2mJaMAkh_HHlJFFZO6R85CWAIwmbLslPSEElJlIuuT2dum9AFp6-jMmXJFH7AJmDyXrfmsm4-kcj6ZoFtj67d00tUWbTJy3mPYuMZiYzAZh7Zel23tmnNyUpWrgBeHOiDvj-P56InOXibT0f2MGiHzlnKlJJgqBcvR5BWXLM_4QmkULBc5X1RZGScWAVNlbGVyIy2UaCu9-4tzMSC3-9yNd18dhrZY18HgalU26LpQ8JxryTVoFdGbf-jSdb6J10VKsHQXJyIFe8p4F4LHqtj4-JPfFgyKnekimi52pouD6bhyfQjuFmu0vws_aiNwtQdqRPyTx1KdpZn4BtXsgSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831522233</pqid></control><display><type>article</type><title>Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Shenghao ; Zhao, Qunfei ; Xia, Zeyang</creator><creatorcontrib>Li, Shenghao ; Zhao, Qunfei ; Xia, Zeyang</creatorcontrib><description>Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The sparse-to-local-dense matching asymmetrically establishes correspondences with consistent sub-pixel coordinates while reducing the computation of matching. The salient features are explicitly located, and the description is conditioned on both views with the global receptive field provided by the attention mechanism. The correspondences are progressively established in multiple levels to reduce the underlying re-projection error. We further propose a 3D noise-aware regularizer with differentiable triangulation. Additional guidance from 3D space is encoded by the regularizer in training to handle the supervision noise caused by the errors in camera poses and depth maps. The proposed method demonstrates outstanding matching accuracy and geometric estimation capability on multiple datasets and tasks.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3287500</identifier><identifier>PMID: 37347636</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cameras ; Correspondence Estimation ; Device-to-device communication ; Epipolar Geometry ; Estimation ; Feature detection ; Feature extraction ; Geometric accuracy ; Geometry ; Local Feature ; Matching ; Transformer ; Triangulation ; Visualization</subject><ispartof>IEEE transactions on image processing, 2023-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-27740cf50d2ec8f241862b79e318382bf6ad2ede0e57cdfc8c4d0aedf90042223</citedby><cites>FETCH-LOGICAL-c348t-27740cf50d2ec8f241862b79e318382bf6ad2ede0e57cdfc8c4d0aedf90042223</cites><orcidid>0000-0002-8968-7333 ; 0000-0002-9882-730X ; 0000-0002-0075-7949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10159656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10159656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37347636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shenghao</creatorcontrib><creatorcontrib>Zhao, Qunfei</creatorcontrib><creatorcontrib>Xia, Zeyang</creatorcontrib><title>Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The sparse-to-local-dense matching asymmetrically establishes correspondences with consistent sub-pixel coordinates while reducing the computation of matching. The salient features are explicitly located, and the description is conditioned on both views with the global receptive field provided by the attention mechanism. The correspondences are progressively established in multiple levels to reduce the underlying re-projection error. We further propose a 3D noise-aware regularizer with differentiable triangulation. Additional guidance from 3D space is encoded by the regularizer in training to handle the supervision noise caused by the errors in camera poses and depth maps. The proposed method demonstrates outstanding matching accuracy and geometric estimation capability on multiple datasets and tasks.</description><subject>Cameras</subject><subject>Correspondence Estimation</subject><subject>Device-to-device communication</subject><subject>Epipolar Geometry</subject><subject>Estimation</subject><subject>Feature detection</subject><subject>Feature extraction</subject><subject>Geometric accuracy</subject><subject>Geometry</subject><subject>Local Feature</subject><subject>Matching</subject><subject>Transformer</subject><subject>Triangulation</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMotlbvHkQWvHhJnXzsZnOUWmuhomA9L9tkVre0m5rsHvrvTWkV8TQD88zLzEPIJYMhY6Dv5tPXIQcuhoLnKgU4In2mJaMAkh_HHlJFFZO6R85CWAIwmbLslPSEElJlIuuT2dum9AFp6-jMmXJFH7AJmDyXrfmsm4-kcj6ZoFtj67d00tUWbTJy3mPYuMZiYzAZh7Zel23tmnNyUpWrgBeHOiDvj-P56InOXibT0f2MGiHzlnKlJJgqBcvR5BWXLM_4QmkULBc5X1RZGScWAVNlbGVyIy2UaCu9-4tzMSC3-9yNd18dhrZY18HgalU26LpQ8JxryTVoFdGbf-jSdb6J10VKsHQXJyIFe8p4F4LHqtj4-JPfFgyKnekimi52pouD6bhyfQjuFmu0vws_aiNwtQdqRPyTx1KdpZn4BtXsgSk</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Shenghao</creator><creator>Zhao, Qunfei</creator><creator>Xia, Zeyang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8968-7333</orcidid><orcidid>https://orcid.org/0000-0002-9882-730X</orcidid><orcidid>https://orcid.org/0000-0002-0075-7949</orcidid></search><sort><creationdate>20230101</creationdate><title>Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation</title><author>Li, Shenghao ; Zhao, Qunfei ; Xia, Zeyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-27740cf50d2ec8f241862b79e318382bf6ad2ede0e57cdfc8c4d0aedf90042223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Correspondence Estimation</topic><topic>Device-to-device communication</topic><topic>Epipolar Geometry</topic><topic>Estimation</topic><topic>Feature detection</topic><topic>Feature extraction</topic><topic>Geometric accuracy</topic><topic>Geometry</topic><topic>Local Feature</topic><topic>Matching</topic><topic>Transformer</topic><topic>Triangulation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shenghao</creatorcontrib><creatorcontrib>Zhao, Qunfei</creatorcontrib><creatorcontrib>Xia, Zeyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shenghao</au><au>Zhao, Qunfei</au><au>Xia, Zeyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Establishing reliable correspondences between two views is one of the most important components of various vision tasks. This paper proposes a novel sparse-to-local-dense (S2LD) matching method to conduct fully differentiable correspondence estimation with the prior from epipolar geometry. The sparse-to-local-dense matching asymmetrically establishes correspondences with consistent sub-pixel coordinates while reducing the computation of matching. The salient features are explicitly located, and the description is conditioned on both views with the global receptive field provided by the attention mechanism. The correspondences are progressively established in multiple levels to reduce the underlying re-projection error. We further propose a 3D noise-aware regularizer with differentiable triangulation. Additional guidance from 3D space is encoded by the regularizer in training to handle the supervision noise caused by the errors in camera poses and depth maps. The proposed method demonstrates outstanding matching accuracy and geometric estimation capability on multiple datasets and tasks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37347636</pmid><doi>10.1109/TIP.2023.3287500</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8968-7333</orcidid><orcidid>https://orcid.org/0000-0002-9882-730X</orcidid><orcidid>https://orcid.org/0000-0002-0075-7949</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023-01, Vol.32, p.1-1 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2023_3287500 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Correspondence Estimation Device-to-device communication Epipolar Geometry Estimation Feature detection Feature extraction Geometric accuracy Geometry Local Feature Matching Transformer Triangulation Visualization |
title | Sparse-to-Local-Dense Matching for Geometry-Guided Correspondence Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse-to-Local-Dense%20Matching%20for%20Geometry-Guided%20Correspondence%20Estimation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Shenghao&rft.date=2023-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3287500&rft_dat=%3Cproquest_RIE%3E2829429097%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831522233&rft_id=info:pmid/37347636&rft_ieee_id=10159656&rfr_iscdi=true |