Generic Reversible Visible Watermarking via Regularized Graph Fourier Transform Coding

Reversible visible watermarking (RVW) is an active copyright protection mechanism. It not only transparently superimposes copyright patterns on specific positions of digital images or video frames to declare the copyright ownership information, but also completely erases the visible watermark image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2022, Vol.31, p.691-705
Hauptverfasser: Qi, Wenfa, Guo, Sirui, Hu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue
container_start_page 691
container_title IEEE transactions on image processing
container_volume 31
creator Qi, Wenfa
Guo, Sirui
Hu, Wei
description Reversible visible watermarking (RVW) is an active copyright protection mechanism. It not only transparently superimposes copyright patterns on specific positions of digital images or video frames to declare the copyright ownership information, but also completely erases the visible watermark image and thus enables restoring the original host image without any distortion. However, existing RVW algorithms mostly construct the reversible mapping mechanism for a specific visible watermarking scheme, which is not versatile. Hence, we propose a generic RVW framework to accommodate various visible watermarking schemes. In particular, we obtain a reconstruction data packet-the compressed difference image between the watermarked image and the original host image, which is embedded into the watermarked image via any conventional reversible data hiding method to facilitate the blind recovery of the host image. The key is to achieve compact compression of the difference image for efficient embedding of the reconstruction data packet. To this end, we propose regularized Graph Fourier Transform (GFT) coding, where the difference image is smoothed via the graph Laplacian regularizer for more efficient compression and then encoded by multi-resolution GFTs in an approximately optimal manner. Experimental results show that the proposed framework has much better versatility than state-of-the-art methods. Due to the small amount of auxiliary information to be embedded, the visual quality of the watermarked image is also higher.
doi_str_mv 10.1109/TIP.2021.3134466
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2021_3134466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9653806</ieee_id><sourcerecordid>2615165719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-71636e17467973ed5152130a9b9fc1ac4e1a779019c87fc6de3bf80835d2c1e13</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvgiALXry0ZjbZpDlKsbVQUKTW45LNztbU_ahJt6C_3pRWD55mYJ53eHkIuQQ6AKDqbj59HsQ0hgEDxrkQR6QLikOfUh4fh50msi-Bqw45835FKfAExCnpMK7CqmiXLCZYo7MmesEtOm-zEqOF3c83vUFXafdh62W0tTowy7bUzn5jHk2cXr9H46Z1Fl00d7r2ReOqaNTkAT8nJ4UuPV4cZo-8jh_mo8f-7GkyHd3P-oZxuQndBBMIkgupJMM8gSQGRrXKVGFAG46gpVQUlBnKwogcWVYM6ZAleWwAgfXI7f7v2jWfLfpNWllvsCx1jU3r01gAiIQxmQT05h-6CuXr0G5HBS-JBBUouqeMa7x3WKRrZ4ODrxRounOeBufpznl6cB4i14fHbVZh_hf4lRyAqz1gEfHvrEKvIRXsB-KTg_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615165719</pqid></control><display><type>article</type><title>Generic Reversible Visible Watermarking via Regularized Graph Fourier Transform Coding</title><source>IEEE Electronic Library (IEL)</source><creator>Qi, Wenfa ; Guo, Sirui ; Hu, Wei</creator><creatorcontrib>Qi, Wenfa ; Guo, Sirui ; Hu, Wei</creatorcontrib><description>Reversible visible watermarking (RVW) is an active copyright protection mechanism. It not only transparently superimposes copyright patterns on specific positions of digital images or video frames to declare the copyright ownership information, but also completely erases the visible watermark image and thus enables restoring the original host image without any distortion. However, existing RVW algorithms mostly construct the reversible mapping mechanism for a specific visible watermarking scheme, which is not versatile. Hence, we propose a generic RVW framework to accommodate various visible watermarking schemes. In particular, we obtain a reconstruction data packet-the compressed difference image between the watermarked image and the original host image, which is embedded into the watermarked image via any conventional reversible data hiding method to facilitate the blind recovery of the host image. The key is to achieve compact compression of the difference image for efficient embedding of the reconstruction data packet. To this end, we propose regularized Graph Fourier Transform (GFT) coding, where the difference image is smoothed via the graph Laplacian regularizer for more efficient compression and then encoded by multi-resolution GFTs in an approximately optimal manner. Experimental results show that the proposed framework has much better versatility than state-of-the-art methods. Due to the small amount of auxiliary information to be embedded, the visual quality of the watermarked image is also higher.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3134466</identifier><identifier>PMID: 34914590</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Digital imaging ; Embedding ; Fourier transforms ; graph Fourier transform ; graph Laplacian regularizer ; Image coding ; Image compression ; Image quality ; Image reconstruction ; Image restoration ; Reversible visible watermarking ; Signal processing algorithms ; versatility ; Visualization ; Watermarking</subject><ispartof>IEEE transactions on image processing, 2022, Vol.31, p.691-705</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-71636e17467973ed5152130a9b9fc1ac4e1a779019c87fc6de3bf80835d2c1e13</citedby><cites>FETCH-LOGICAL-c347t-71636e17467973ed5152130a9b9fc1ac4e1a779019c87fc6de3bf80835d2c1e13</cites><orcidid>0000-0002-4708-5959 ; 0000-0003-2803-4272 ; 0000-0002-9860-0922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9653806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9653806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34914590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Wenfa</creatorcontrib><creatorcontrib>Guo, Sirui</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><title>Generic Reversible Visible Watermarking via Regularized Graph Fourier Transform Coding</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Reversible visible watermarking (RVW) is an active copyright protection mechanism. It not only transparently superimposes copyright patterns on specific positions of digital images or video frames to declare the copyright ownership information, but also completely erases the visible watermark image and thus enables restoring the original host image without any distortion. However, existing RVW algorithms mostly construct the reversible mapping mechanism for a specific visible watermarking scheme, which is not versatile. Hence, we propose a generic RVW framework to accommodate various visible watermarking schemes. In particular, we obtain a reconstruction data packet-the compressed difference image between the watermarked image and the original host image, which is embedded into the watermarked image via any conventional reversible data hiding method to facilitate the blind recovery of the host image. The key is to achieve compact compression of the difference image for efficient embedding of the reconstruction data packet. To this end, we propose regularized Graph Fourier Transform (GFT) coding, where the difference image is smoothed via the graph Laplacian regularizer for more efficient compression and then encoded by multi-resolution GFTs in an approximately optimal manner. Experimental results show that the proposed framework has much better versatility than state-of-the-art methods. Due to the small amount of auxiliary information to be embedded, the visual quality of the watermarked image is also higher.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Digital imaging</subject><subject>Embedding</subject><subject>Fourier transforms</subject><subject>graph Fourier transform</subject><subject>graph Laplacian regularizer</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Reversible visible watermarking</subject><subject>Signal processing algorithms</subject><subject>versatility</subject><subject>Visualization</subject><subject>Watermarking</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMotlbvgiALXry0ZjbZpDlKsbVQUKTW45LNztbU_ahJt6C_3pRWD55mYJ53eHkIuQQ6AKDqbj59HsQ0hgEDxrkQR6QLikOfUh4fh50msi-Bqw45835FKfAExCnpMK7CqmiXLCZYo7MmesEtOm-zEqOF3c83vUFXafdh62W0tTowy7bUzn5jHk2cXr9H46Z1Fl00d7r2ReOqaNTkAT8nJ4UuPV4cZo-8jh_mo8f-7GkyHd3P-oZxuQndBBMIkgupJMM8gSQGRrXKVGFAG46gpVQUlBnKwogcWVYM6ZAleWwAgfXI7f7v2jWfLfpNWllvsCx1jU3r01gAiIQxmQT05h-6CuXr0G5HBS-JBBUouqeMa7x3WKRrZ4ODrxRounOeBufpznl6cB4i14fHbVZh_hf4lRyAqz1gEfHvrEKvIRXsB-KTg_s</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Qi, Wenfa</creator><creator>Guo, Sirui</creator><creator>Hu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4708-5959</orcidid><orcidid>https://orcid.org/0000-0003-2803-4272</orcidid><orcidid>https://orcid.org/0000-0002-9860-0922</orcidid></search><sort><creationdate>2022</creationdate><title>Generic Reversible Visible Watermarking via Regularized Graph Fourier Transform Coding</title><author>Qi, Wenfa ; Guo, Sirui ; Hu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-71636e17467973ed5152130a9b9fc1ac4e1a779019c87fc6de3bf80835d2c1e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Digital imaging</topic><topic>Embedding</topic><topic>Fourier transforms</topic><topic>graph Fourier transform</topic><topic>graph Laplacian regularizer</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Reversible visible watermarking</topic><topic>Signal processing algorithms</topic><topic>versatility</topic><topic>Visualization</topic><topic>Watermarking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Wenfa</creatorcontrib><creatorcontrib>Guo, Sirui</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qi, Wenfa</au><au>Guo, Sirui</au><au>Hu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic Reversible Visible Watermarking via Regularized Graph Fourier Transform Coding</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2022</date><risdate>2022</risdate><volume>31</volume><spage>691</spage><epage>705</epage><pages>691-705</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Reversible visible watermarking (RVW) is an active copyright protection mechanism. It not only transparently superimposes copyright patterns on specific positions of digital images or video frames to declare the copyright ownership information, but also completely erases the visible watermark image and thus enables restoring the original host image without any distortion. However, existing RVW algorithms mostly construct the reversible mapping mechanism for a specific visible watermarking scheme, which is not versatile. Hence, we propose a generic RVW framework to accommodate various visible watermarking schemes. In particular, we obtain a reconstruction data packet-the compressed difference image between the watermarked image and the original host image, which is embedded into the watermarked image via any conventional reversible data hiding method to facilitate the blind recovery of the host image. The key is to achieve compact compression of the difference image for efficient embedding of the reconstruction data packet. To this end, we propose regularized Graph Fourier Transform (GFT) coding, where the difference image is smoothed via the graph Laplacian regularizer for more efficient compression and then encoded by multi-resolution GFTs in an approximately optimal manner. Experimental results show that the proposed framework has much better versatility than state-of-the-art methods. Due to the small amount of auxiliary information to be embedded, the visual quality of the watermarked image is also higher.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34914590</pmid><doi>10.1109/TIP.2021.3134466</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4708-5959</orcidid><orcidid>https://orcid.org/0000-0003-2803-4272</orcidid><orcidid>https://orcid.org/0000-0002-9860-0922</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2022, Vol.31, p.691-705
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2021_3134466
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Digital imaging
Embedding
Fourier transforms
graph Fourier transform
graph Laplacian regularizer
Image coding
Image compression
Image quality
Image reconstruction
Image restoration
Reversible visible watermarking
Signal processing algorithms
versatility
Visualization
Watermarking
title Generic Reversible Visible Watermarking via Regularized Graph Fourier Transform Coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A35%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20Reversible%20Visible%20Watermarking%20via%20Regularized%20Graph%20Fourier%20Transform%20Coding&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Qi,%20Wenfa&rft.date=2022&rft.volume=31&rft.spage=691&rft.epage=705&rft.pages=691-705&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3134466&rft_dat=%3Cproquest_RIE%3E2615165719%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2615165719&rft_id=info:pmid/34914590&rft_ieee_id=9653806&rfr_iscdi=true