Toward Accurate Pixelwise Object Tracking via Attention Retrieval
Pixelwise single object tracking is challenging due to the competition of running speeds and segmentation accuracy. Current state-of-the-art real-time approaches seamlessly connect tracking and segmentation by sharing computation of the backbone network, e.g. , SiamMask and D3S fork a light branch f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2021, Vol.30, p.8553-8566 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8566 |
---|---|
container_issue | |
container_start_page | 8553 |
container_title | IEEE transactions on image processing |
container_volume | 30 |
creator | Zhang, Zhipeng Liu, Yufan Li, Bing Hu, Weiming Peng, Houwen |
description | Pixelwise single object tracking is challenging due to the competition of running speeds and segmentation accuracy. Current state-of-the-art real-time approaches seamlessly connect tracking and segmentation by sharing computation of the backbone network, e.g. , SiamMask and D3S fork a light branch from the tracking model to predict segmentation mask. Although efficient, directly reusing features from tracking networks may harm the segmentation accuracy, since background clutter in the backbone feature tends to introduce false positives in segmentation. To mitigate this problem, we propose a unified tracking-retrieval-segmentation framework consisting of an attention retrieval network (ARN) and an iterative feedback network (IFN). Instead of segmenting the target inside the bounding box, the proposed framework performs soft spatial constraints on backbone features to obtain an accurate global segmentation map. Concretely, in ARN, a look-up-table (LUT) is first built by sufficiently using the information of the first frame. By retrieving it, a target-aware attention map is generated to suppress the negative influence of background clutter. To ulteriorly refine the contour of the segmentation, IFN iteratively enhances the features at different resolutions by taking the predicted mask as feedback guidance. Our framework sets a new state of the art on the recent pixelwise tracking benchmark VOT2020 and runs at 40 fps. Notably, the proposed model surpasses SiamMask by 11.7/4.2/5.5 points on VOT2020, DAVIS2016, and DAVIS2017, respectively. Code is available at https://github.com/JudasDie/SOTS . |
doi_str_mv | 10.1109/TIP.2021.3117077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2021_3117077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9563126</ieee_id><sourcerecordid>2580692612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-d0466021b1f18ddd500d5afbf7c398abe6c46a58aedd32f7e8134000698d0bac3</originalsourceid><addsrcrecordid>eNqNkMFrFDEUh4MotlbvgpcBL4LM-l6SSTLHZalaKLTIeh4yyRvJOp2pSaar_70Ztih4MpeXw_e99-PH2GuEDSK0H_ZXtxsOHDcCUYPWT9g5thJrAMmflj80utYo2zP2IqUDAMoG1XN2JqRCo7Q4Z9v9fLTRV1vnlmgzVbfhJ43HkKi66Q_kcrWP1n0P07fqIdhqmzNNOcxT9YVyDPRgx5fs2WDHRK8e5wX7-vFyv_tcX998utptr2snuMy1B6lUidrjgMZ73wD4xg79oJ1oje1JOalsYyx5L_igyaCQAKBa46G3Tlywd6e993H-sVDK3V1IjsbRTjQvqeONKTBXyAv69h_0MC9xKulWChsNRppCwYlycU4p0tDdx3Bn468OoVvr7Uq93Vpv91hvUd6flCP185BcoMnRH62k1aCMKGx56wHz__QuZLsWu5uXKRf1zUkNRH-VtlECuRK_AaAEk8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581570848</pqid></control><display><type>article</type><title>Toward Accurate Pixelwise Object Tracking via Attention Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Zhipeng ; Liu, Yufan ; Li, Bing ; Hu, Weiming ; Peng, Houwen</creator><creatorcontrib>Zhang, Zhipeng ; Liu, Yufan ; Li, Bing ; Hu, Weiming ; Peng, Houwen</creatorcontrib><description>Pixelwise single object tracking is challenging due to the competition of running speeds and segmentation accuracy. Current state-of-the-art real-time approaches seamlessly connect tracking and segmentation by sharing computation of the backbone network, e.g. , SiamMask and D3S fork a light branch from the tracking model to predict segmentation mask. Although efficient, directly reusing features from tracking networks may harm the segmentation accuracy, since background clutter in the backbone feature tends to introduce false positives in segmentation. To mitigate this problem, we propose a unified tracking-retrieval-segmentation framework consisting of an attention retrieval network (ARN) and an iterative feedback network (IFN). Instead of segmenting the target inside the bounding box, the proposed framework performs soft spatial constraints on backbone features to obtain an accurate global segmentation map. Concretely, in ARN, a look-up-table (LUT) is first built by sufficiently using the information of the first frame. By retrieving it, a target-aware attention map is generated to suppress the negative influence of background clutter. To ulteriorly refine the contour of the segmentation, IFN iteratively enhances the features at different resolutions by taking the predicted mask as feedback guidance. Our framework sets a new state of the art on the recent pixelwise tracking benchmark VOT2020 and runs at 40 fps. Notably, the proposed model surpasses SiamMask by 11.7/4.2/5.5 points on VOT2020, DAVIS2016, and DAVIS2017, respectively. Code is available at https://github.com/JudasDie/SOTS .</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3117077</identifier><identifier>PMID: 34618673</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Accuracy ; attention retrieval ; Benchmark testing ; Clutter ; Computer networks ; Computer Science ; Computer Science, Artificial Intelligence ; Engineering ; Engineering, Electrical & Electronic ; Feedback ; Image segmentation ; Iterative methods ; Object tracking ; object tracking and segmentation ; Pixelwise tracking ; Predictive models ; Retrieval ; Science & Technology ; Segmentation ; Table lookup ; Target tracking ; Technology ; Tracking networks</subject><ispartof>IEEE transactions on image processing, 2021, Vol.30, p.8553-8566</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000706831700008</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c324t-d0466021b1f18ddd500d5afbf7c398abe6c46a58aedd32f7e8134000698d0bac3</citedby><cites>FETCH-LOGICAL-c324t-d0466021b1f18ddd500d5afbf7c398abe6c46a58aedd32f7e8134000698d0bac3</cites><orcidid>0000-0002-5888-6735 ; 0000-0002-8426-9335 ; 0000-0003-0479-332X ; 0000-0001-9237-8825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9563126$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9563126$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Zhipeng</creatorcontrib><creatorcontrib>Liu, Yufan</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Hu, Weiming</creatorcontrib><creatorcontrib>Peng, Houwen</creatorcontrib><title>Toward Accurate Pixelwise Object Tracking via Attention Retrieval</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE T IMAGE PROCESS</addtitle><description>Pixelwise single object tracking is challenging due to the competition of running speeds and segmentation accuracy. Current state-of-the-art real-time approaches seamlessly connect tracking and segmentation by sharing computation of the backbone network, e.g. , SiamMask and D3S fork a light branch from the tracking model to predict segmentation mask. Although efficient, directly reusing features from tracking networks may harm the segmentation accuracy, since background clutter in the backbone feature tends to introduce false positives in segmentation. To mitigate this problem, we propose a unified tracking-retrieval-segmentation framework consisting of an attention retrieval network (ARN) and an iterative feedback network (IFN). Instead of segmenting the target inside the bounding box, the proposed framework performs soft spatial constraints on backbone features to obtain an accurate global segmentation map. Concretely, in ARN, a look-up-table (LUT) is first built by sufficiently using the information of the first frame. By retrieving it, a target-aware attention map is generated to suppress the negative influence of background clutter. To ulteriorly refine the contour of the segmentation, IFN iteratively enhances the features at different resolutions by taking the predicted mask as feedback guidance. Our framework sets a new state of the art on the recent pixelwise tracking benchmark VOT2020 and runs at 40 fps. Notably, the proposed model surpasses SiamMask by 11.7/4.2/5.5 points on VOT2020, DAVIS2016, and DAVIS2017, respectively. Code is available at https://github.com/JudasDie/SOTS .</description><subject>Accuracy</subject><subject>attention retrieval</subject><subject>Benchmark testing</subject><subject>Clutter</subject><subject>Computer networks</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Feedback</subject><subject>Image segmentation</subject><subject>Iterative methods</subject><subject>Object tracking</subject><subject>object tracking and segmentation</subject><subject>Pixelwise tracking</subject><subject>Predictive models</subject><subject>Retrieval</subject><subject>Science & Technology</subject><subject>Segmentation</subject><subject>Table lookup</subject><subject>Target tracking</subject><subject>Technology</subject><subject>Tracking networks</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkMFrFDEUh4MotlbvgpcBL4LM-l6SSTLHZalaKLTIeh4yyRvJOp2pSaar_70Ztih4MpeXw_e99-PH2GuEDSK0H_ZXtxsOHDcCUYPWT9g5thJrAMmflj80utYo2zP2IqUDAMoG1XN2JqRCo7Q4Z9v9fLTRV1vnlmgzVbfhJ43HkKi66Q_kcrWP1n0P07fqIdhqmzNNOcxT9YVyDPRgx5fs2WDHRK8e5wX7-vFyv_tcX998utptr2snuMy1B6lUidrjgMZ73wD4xg79oJ1oje1JOalsYyx5L_igyaCQAKBa46G3Tlywd6e993H-sVDK3V1IjsbRTjQvqeONKTBXyAv69h_0MC9xKulWChsNRppCwYlycU4p0tDdx3Bn468OoVvr7Uq93Vpv91hvUd6flCP185BcoMnRH62k1aCMKGx56wHz__QuZLsWu5uXKRf1zUkNRH-VtlECuRK_AaAEk8o</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Zhang, Zhipeng</creator><creator>Liu, Yufan</creator><creator>Li, Bing</creator><creator>Hu, Weiming</creator><creator>Peng, Houwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5888-6735</orcidid><orcidid>https://orcid.org/0000-0002-8426-9335</orcidid><orcidid>https://orcid.org/0000-0003-0479-332X</orcidid><orcidid>https://orcid.org/0000-0001-9237-8825</orcidid></search><sort><creationdate>2021</creationdate><title>Toward Accurate Pixelwise Object Tracking via Attention Retrieval</title><author>Zhang, Zhipeng ; Liu, Yufan ; Li, Bing ; Hu, Weiming ; Peng, Houwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-d0466021b1f18ddd500d5afbf7c398abe6c46a58aedd32f7e8134000698d0bac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>attention retrieval</topic><topic>Benchmark testing</topic><topic>Clutter</topic><topic>Computer networks</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Feedback</topic><topic>Image segmentation</topic><topic>Iterative methods</topic><topic>Object tracking</topic><topic>object tracking and segmentation</topic><topic>Pixelwise tracking</topic><topic>Predictive models</topic><topic>Retrieval</topic><topic>Science & Technology</topic><topic>Segmentation</topic><topic>Table lookup</topic><topic>Target tracking</topic><topic>Technology</topic><topic>Tracking networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhipeng</creatorcontrib><creatorcontrib>Liu, Yufan</creatorcontrib><creatorcontrib>Li, Bing</creatorcontrib><creatorcontrib>Hu, Weiming</creatorcontrib><creatorcontrib>Peng, Houwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zhipeng</au><au>Liu, Yufan</au><au>Li, Bing</au><au>Hu, Weiming</au><au>Peng, Houwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Accurate Pixelwise Object Tracking via Attention Retrieval</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><stitle>IEEE T IMAGE PROCESS</stitle><date>2021</date><risdate>2021</risdate><volume>30</volume><spage>8553</spage><epage>8566</epage><pages>8553-8566</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Pixelwise single object tracking is challenging due to the competition of running speeds and segmentation accuracy. Current state-of-the-art real-time approaches seamlessly connect tracking and segmentation by sharing computation of the backbone network, e.g. , SiamMask and D3S fork a light branch from the tracking model to predict segmentation mask. Although efficient, directly reusing features from tracking networks may harm the segmentation accuracy, since background clutter in the backbone feature tends to introduce false positives in segmentation. To mitigate this problem, we propose a unified tracking-retrieval-segmentation framework consisting of an attention retrieval network (ARN) and an iterative feedback network (IFN). Instead of segmenting the target inside the bounding box, the proposed framework performs soft spatial constraints on backbone features to obtain an accurate global segmentation map. Concretely, in ARN, a look-up-table (LUT) is first built by sufficiently using the information of the first frame. By retrieving it, a target-aware attention map is generated to suppress the negative influence of background clutter. To ulteriorly refine the contour of the segmentation, IFN iteratively enhances the features at different resolutions by taking the predicted mask as feedback guidance. Our framework sets a new state of the art on the recent pixelwise tracking benchmark VOT2020 and runs at 40 fps. Notably, the proposed model surpasses SiamMask by 11.7/4.2/5.5 points on VOT2020, DAVIS2016, and DAVIS2017, respectively. Code is available at https://github.com/JudasDie/SOTS .</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><pmid>34618673</pmid><doi>10.1109/TIP.2021.3117077</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5888-6735</orcidid><orcidid>https://orcid.org/0000-0002-8426-9335</orcidid><orcidid>https://orcid.org/0000-0003-0479-332X</orcidid><orcidid>https://orcid.org/0000-0001-9237-8825</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2021, Vol.30, p.8553-8566 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2021_3117077 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy attention retrieval Benchmark testing Clutter Computer networks Computer Science Computer Science, Artificial Intelligence Engineering Engineering, Electrical & Electronic Feedback Image segmentation Iterative methods Object tracking object tracking and segmentation Pixelwise tracking Predictive models Retrieval Science & Technology Segmentation Table lookup Target tracking Technology Tracking networks |
title | Toward Accurate Pixelwise Object Tracking via Attention Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Accurate%20Pixelwise%20Object%20Tracking%20via%20Attention%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Zhang,%20Zhipeng&rft.date=2021&rft.volume=30&rft.spage=8553&rft.epage=8566&rft.pages=8553-8566&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3117077&rft_dat=%3Cproquest_RIE%3E2580692612%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581570848&rft_id=info:pmid/34618673&rft_ieee_id=9563126&rfr_iscdi=true |