Fine-Grained Fashion Similarity Prediction by Attribute-Specific Embedding Learning
This paper strives to predict fine-grained fashion similarity. In this similarity paradigm, one should pay more attention to the similarity in terms of a specific design/attribute between fashion items. For example, whether the collar designs of the two clothes are similar. It has potential value in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2021, Vol.30, p.8410-8425 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8425 |
---|---|
container_issue | |
container_start_page | 8410 |
container_title | IEEE transactions on image processing |
container_volume | 30 |
creator | Dong, Jianfeng Ma, Zhe Mao, Xiaofeng Yang, Xun He, Yuan Hong, Richang Ji, Shouling |
description | This paper strives to predict fine-grained fashion similarity. In this similarity paradigm, one should pay more attention to the similarity in terms of a specific design/attribute between fashion items. For example, whether the collar designs of the two clothes are similar. It has potential value in many fashion related applications, such as fashion copyright protection. To this end, we propose an Attribute-Specific Embedding Network (ASEN) to jointly learn multiple attribute-specific embeddings, thus measure the fine-grained similarity in the corresponding space. The proposed ASEN is comprised of a global branch and a local branch. The global branch takes the whole image as input to extract features from a global perspective, while the local branch takes as input the zoomed-in region-of-interest (RoI) w.r.t. the specified attribute thus able to extract more fine-grained features. As the global branch and the local branch extract the features from different perspectives, they are complementary to each other. Additionally, in each branch, two attention modules, i.e., Attribute-aware Spatial Attention and Attribute-aware Channel Attention , are integrated to make ASEN be able to locate the related regions and capture the essential patterns under the guidance of the specified attribute, thus make the learned attribute-specific embeddings better reflect the fine-grained similarity. Extensive experiments on three fashion-related datasets, i.e., FashionAI, DARN, and DeepFashion, show the effectiveness of ASEN for fine-grained fashion similarity prediction and its potential for fashion reranking. Code and data are available at https://github.com/maryeon/asenpp . |
doi_str_mv | 10.1109/TIP.2021.3115658 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2021_3115658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9556133</ieee_id><sourcerecordid>2578776127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-486cd96ab9d0f5cdabc0ab8ba16a773f61ebee1f63280d3cd482f35625d987863</originalsourceid><addsrcrecordid>eNpdkM1LAzEUxIMoVqt3wcuCFy9b8zabr2MpthYKCtXzkk3easp2tybbQ_97UyoePM3w-M1jGELugE4AqH56X75NClrAhAFwwdUZuQJdQk5pWZwnT7nMJZR6RK5j3FAKJQdxSUas5Fpwpq_Ieu47zBfBJHHZ3MQv33fZ2m99a4IfDtlbQOftcLzWh2w6DMHX-wHz9Q6tb7zNnrc1Oue7z2yFJnTJ3JCLxrQRb391TD7mz--zl3z1uljOpqvcMk2HvFTCOi1MrR1tuHWmttTUqjYgjJSsEYA1IjSCFYo6Zl2pioZxUXCnlVSCjcnj6e8u9N97jEO19dFi25oO-32sCi6VlAIKmdCHf-im34cutUuUolTrVClR9ETZ0McYsKl2wW9NOFRAq-PgVRq8Og5e_Q6eIveniEfEP1xzLoAx9gN9Gnnu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580099390</pqid></control><display><type>article</type><title>Fine-Grained Fashion Similarity Prediction by Attribute-Specific Embedding Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Jianfeng ; Ma, Zhe ; Mao, Xiaofeng ; Yang, Xun ; He, Yuan ; Hong, Richang ; Ji, Shouling</creator><creatorcontrib>Dong, Jianfeng ; Ma, Zhe ; Mao, Xiaofeng ; Yang, Xun ; He, Yuan ; Hong, Richang ; Ji, Shouling</creatorcontrib><description>This paper strives to predict fine-grained fashion similarity. In this similarity paradigm, one should pay more attention to the similarity in terms of a specific design/attribute between fashion items. For example, whether the collar designs of the two clothes are similar. It has potential value in many fashion related applications, such as fashion copyright protection. To this end, we propose an Attribute-Specific Embedding Network (ASEN) to jointly learn multiple attribute-specific embeddings, thus measure the fine-grained similarity in the corresponding space. The proposed ASEN is comprised of a global branch and a local branch. The global branch takes the whole image as input to extract features from a global perspective, while the local branch takes as input the zoomed-in region-of-interest (RoI) w.r.t. the specified attribute thus able to extract more fine-grained features. As the global branch and the local branch extract the features from different perspectives, they are complementary to each other. Additionally, in each branch, two attention modules, i.e., Attribute-aware Spatial Attention and Attribute-aware Channel Attention , are integrated to make ASEN be able to locate the related regions and capture the essential patterns under the guidance of the specified attribute, thus make the learned attribute-specific embeddings better reflect the fine-grained similarity. Extensive experiments on three fashion-related datasets, i.e., FashionAI, DARN, and DeepFashion, show the effectiveness of ASEN for fine-grained fashion similarity prediction and its potential for fashion reranking. Code and data are available at https://github.com/maryeon/asenpp .</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3115658</identifier><identifier>PMID: 34596539</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer science ; Deep learning ; Embedding ; Extraterrestrial measurements ; Fashion retrieval ; fashion understanding ; Feature extraction ; fine-grained similarity ; image retrieval ; Location awareness ; Similarity ; Task analysis ; Training</subject><ispartof>IEEE transactions on image processing, 2021, Vol.30, p.8410-8425</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-486cd96ab9d0f5cdabc0ab8ba16a773f61ebee1f63280d3cd482f35625d987863</citedby><cites>FETCH-LOGICAL-c390t-486cd96ab9d0f5cdabc0ab8ba16a773f61ebee1f63280d3cd482f35625d987863</cites><orcidid>0000-0003-0201-1638 ; 0000-0001-5461-3986 ; 0000-0003-4268-372X ; 0000-0001-5244-3274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9556133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9556133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Jianfeng</creatorcontrib><creatorcontrib>Ma, Zhe</creatorcontrib><creatorcontrib>Mao, Xiaofeng</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Hong, Richang</creatorcontrib><creatorcontrib>Ji, Shouling</creatorcontrib><title>Fine-Grained Fashion Similarity Prediction by Attribute-Specific Embedding Learning</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>This paper strives to predict fine-grained fashion similarity. In this similarity paradigm, one should pay more attention to the similarity in terms of a specific design/attribute between fashion items. For example, whether the collar designs of the two clothes are similar. It has potential value in many fashion related applications, such as fashion copyright protection. To this end, we propose an Attribute-Specific Embedding Network (ASEN) to jointly learn multiple attribute-specific embeddings, thus measure the fine-grained similarity in the corresponding space. The proposed ASEN is comprised of a global branch and a local branch. The global branch takes the whole image as input to extract features from a global perspective, while the local branch takes as input the zoomed-in region-of-interest (RoI) w.r.t. the specified attribute thus able to extract more fine-grained features. As the global branch and the local branch extract the features from different perspectives, they are complementary to each other. Additionally, in each branch, two attention modules, i.e., Attribute-aware Spatial Attention and Attribute-aware Channel Attention , are integrated to make ASEN be able to locate the related regions and capture the essential patterns under the guidance of the specified attribute, thus make the learned attribute-specific embeddings better reflect the fine-grained similarity. Extensive experiments on three fashion-related datasets, i.e., FashionAI, DARN, and DeepFashion, show the effectiveness of ASEN for fine-grained fashion similarity prediction and its potential for fashion reranking. Code and data are available at https://github.com/maryeon/asenpp .</description><subject>Computer science</subject><subject>Deep learning</subject><subject>Embedding</subject><subject>Extraterrestrial measurements</subject><subject>Fashion retrieval</subject><subject>fashion understanding</subject><subject>Feature extraction</subject><subject>fine-grained similarity</subject><subject>image retrieval</subject><subject>Location awareness</subject><subject>Similarity</subject><subject>Task analysis</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEUxIMoVqt3wcuCFy9b8zabr2MpthYKCtXzkk3easp2tybbQ_97UyoePM3w-M1jGELugE4AqH56X75NClrAhAFwwdUZuQJdQk5pWZwnT7nMJZR6RK5j3FAKJQdxSUas5Fpwpq_Ieu47zBfBJHHZ3MQv33fZ2m99a4IfDtlbQOftcLzWh2w6DMHX-wHz9Q6tb7zNnrc1Oue7z2yFJnTJ3JCLxrQRb391TD7mz--zl3z1uljOpqvcMk2HvFTCOi1MrR1tuHWmttTUqjYgjJSsEYA1IjSCFYo6Zl2pioZxUXCnlVSCjcnj6e8u9N97jEO19dFi25oO-32sCi6VlAIKmdCHf-im34cutUuUolTrVClR9ETZ0McYsKl2wW9NOFRAq-PgVRq8Og5e_Q6eIveniEfEP1xzLoAx9gN9Gnnu</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Dong, Jianfeng</creator><creator>Ma, Zhe</creator><creator>Mao, Xiaofeng</creator><creator>Yang, Xun</creator><creator>He, Yuan</creator><creator>Hong, Richang</creator><creator>Ji, Shouling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0201-1638</orcidid><orcidid>https://orcid.org/0000-0001-5461-3986</orcidid><orcidid>https://orcid.org/0000-0003-4268-372X</orcidid><orcidid>https://orcid.org/0000-0001-5244-3274</orcidid></search><sort><creationdate>2021</creationdate><title>Fine-Grained Fashion Similarity Prediction by Attribute-Specific Embedding Learning</title><author>Dong, Jianfeng ; Ma, Zhe ; Mao, Xiaofeng ; Yang, Xun ; He, Yuan ; Hong, Richang ; Ji, Shouling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-486cd96ab9d0f5cdabc0ab8ba16a773f61ebee1f63280d3cd482f35625d987863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer science</topic><topic>Deep learning</topic><topic>Embedding</topic><topic>Extraterrestrial measurements</topic><topic>Fashion retrieval</topic><topic>fashion understanding</topic><topic>Feature extraction</topic><topic>fine-grained similarity</topic><topic>image retrieval</topic><topic>Location awareness</topic><topic>Similarity</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jianfeng</creatorcontrib><creatorcontrib>Ma, Zhe</creatorcontrib><creatorcontrib>Mao, Xiaofeng</creatorcontrib><creatorcontrib>Yang, Xun</creatorcontrib><creatorcontrib>He, Yuan</creatorcontrib><creatorcontrib>Hong, Richang</creatorcontrib><creatorcontrib>Ji, Shouling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Jianfeng</au><au>Ma, Zhe</au><au>Mao, Xiaofeng</au><au>Yang, Xun</au><au>He, Yuan</au><au>Hong, Richang</au><au>Ji, Shouling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Grained Fashion Similarity Prediction by Attribute-Specific Embedding Learning</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2021</date><risdate>2021</risdate><volume>30</volume><spage>8410</spage><epage>8425</epage><pages>8410-8425</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper strives to predict fine-grained fashion similarity. In this similarity paradigm, one should pay more attention to the similarity in terms of a specific design/attribute between fashion items. For example, whether the collar designs of the two clothes are similar. It has potential value in many fashion related applications, such as fashion copyright protection. To this end, we propose an Attribute-Specific Embedding Network (ASEN) to jointly learn multiple attribute-specific embeddings, thus measure the fine-grained similarity in the corresponding space. The proposed ASEN is comprised of a global branch and a local branch. The global branch takes the whole image as input to extract features from a global perspective, while the local branch takes as input the zoomed-in region-of-interest (RoI) w.r.t. the specified attribute thus able to extract more fine-grained features. As the global branch and the local branch extract the features from different perspectives, they are complementary to each other. Additionally, in each branch, two attention modules, i.e., Attribute-aware Spatial Attention and Attribute-aware Channel Attention , are integrated to make ASEN be able to locate the related regions and capture the essential patterns under the guidance of the specified attribute, thus make the learned attribute-specific embeddings better reflect the fine-grained similarity. Extensive experiments on three fashion-related datasets, i.e., FashionAI, DARN, and DeepFashion, show the effectiveness of ASEN for fine-grained fashion similarity prediction and its potential for fashion reranking. Code and data are available at https://github.com/maryeon/asenpp .</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34596539</pmid><doi>10.1109/TIP.2021.3115658</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0201-1638</orcidid><orcidid>https://orcid.org/0000-0001-5461-3986</orcidid><orcidid>https://orcid.org/0000-0003-4268-372X</orcidid><orcidid>https://orcid.org/0000-0001-5244-3274</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2021, Vol.30, p.8410-8425 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2021_3115658 |
source | IEEE Electronic Library (IEL) |
subjects | Computer science Deep learning Embedding Extraterrestrial measurements Fashion retrieval fashion understanding Feature extraction fine-grained similarity image retrieval Location awareness Similarity Task analysis Training |
title | Fine-Grained Fashion Similarity Prediction by Attribute-Specific Embedding Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Grained%20Fashion%20Similarity%20Prediction%20by%20Attribute-Specific%20Embedding%20Learning&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Dong,%20Jianfeng&rft.date=2021&rft.volume=30&rft.spage=8410&rft.epage=8425&rft.pages=8410-8425&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3115658&rft_dat=%3Cproquest_RIE%3E2578776127%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580099390&rft_id=info:pmid/34596539&rft_ieee_id=9556133&rfr_iscdi=true |