Robust Subspace Detectors Based on α-Divergence With Application to Detection in Imaging

Robust variants of Wald, Rao and likelihood ratio (LR) tests for the detection of a signal subspace in a signal interference subspace corrupted by contaminated Gaussian noise are proposed in this paper. They are derived using the \alpha - divergence, and the trade-off between the robustness and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2021-01, Vol.30, p.5017-5031
Hauptverfasser: Rekavandi, Aref Miri, Seghouane, Abd-Krim, Evans, Robin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5031
container_issue
container_start_page 5017
container_title IEEE transactions on image processing
container_volume 30
creator Rekavandi, Aref Miri
Seghouane, Abd-Krim
Evans, Robin J.
description Robust variants of Wald, Rao and likelihood ratio (LR) tests for the detection of a signal subspace in a signal interference subspace corrupted by contaminated Gaussian noise are proposed in this paper. They are derived using the \alpha - divergence, and the trade-off between the robustness and the power (the probability of detection) of the tests is adjustable using a single hyperparameter \alpha . It is shown that when \alpha \rightarrow 1 , these tests are equivalent to their well known classical counterparts. For example the robust LR test coincides with the LR test or the matched subspace detector (MSD). Asymptotic results are provided to support the proposed tests and robustness to outliers is obtained using values of \alpha < 1 . Numerical experiments illustrating the performance of these tests on simulated, real functional magnetic resonance imaging (fMRI), hyperspectral and synthetic aperture radar (SAR) data are also presented.
doi_str_mv 10.1109/TIP.2021.3077139
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2021_3077139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9426446</ieee_id><sourcerecordid>2524362520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-8bbcfa1a232050a41adbc3e6f930be976b12b6c9eef2d8f2311b8b908cd5a71e3</originalsourceid><addsrcrecordid>eNpdkEtLxDAQx4Movu-CIAUvXrpmkvSR4_peWFB8IJ5Kkk7XSLetTSv4sfwifiZTtnrwMpkwv_8w_Ag5ADoBoPL0cXY3YZTBhNMkAS7XyDZIASGlgq37nkZJmICQW2THuTdKQUQQb5ItzmUMUSS3yct9rXvXBQ-9do0yGFxgh6arWxecKYd5UFfB91d4YT-wXWDlgWfbvQbTpimtUZ31464eQ8PHVsFsqRa2WuyRjUKVDvfHd5c8XV0-nt-E89vr2fl0Hhouki5MtTaFAsU4oxFVAlSuDce4kJxqlEmsgenYSMSC5WnBOIBOtaSpySOVAPJdcrLa27T1e4-uy5bWGSxLVWHdu4xFTPDYV-rR43_oW923lb9uoFIpOE_BU3RFmbZ2rsUia1q7VO1nBjQbtGdeezZoz0btPnI0Lu71EvO_wK9nDxyuAIuIf2MpWCxEzH8ABoaGaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528943381</pqid></control><display><type>article</type><title>Robust Subspace Detectors Based on α-Divergence With Application to Detection in Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Rekavandi, Aref Miri ; Seghouane, Abd-Krim ; Evans, Robin J.</creator><creatorcontrib>Rekavandi, Aref Miri ; Seghouane, Abd-Krim ; Evans, Robin J.</creatorcontrib><description><![CDATA[Robust variants of Wald, Rao and likelihood ratio (LR) tests for the detection of a signal subspace in a signal interference subspace corrupted by contaminated Gaussian noise are proposed in this paper. They are derived using the <inline-formula> <tex-math notation="LaTeX">\alpha - </tex-math></inline-formula>divergence, and the trade-off between the robustness and the power (the probability of detection) of the tests is adjustable using a single hyperparameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>. It is shown that when <inline-formula> <tex-math notation="LaTeX">\alpha \rightarrow 1 </tex-math></inline-formula>, these tests are equivalent to their well known classical counterparts. For example the robust LR test coincides with the LR test or the matched subspace detector (MSD). Asymptotic results are provided to support the proposed tests and robustness to outliers is obtained using values of <inline-formula> <tex-math notation="LaTeX">\alpha < 1 </tex-math></inline-formula>. Numerical experiments illustrating the performance of these tests on simulated, real functional magnetic resonance imaging (fMRI), hyperspectral and synthetic aperture radar (SAR) data are also presented.]]></description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3077139</identifier><identifier>PMID: 33961559</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;α -divergence ; Detectors ; Gaussian noise ; Light rail systems ; Likelihood ratio ; likelihood ratio test ; Magnetic resonance imaging ; Maximum likelihood estimation ; Outliers (statistics) ; Pollution measurement ; Random noise ; Rao test ; Robust detection ; Robustness ; Robustness (mathematics) ; subspace detectors ; Subspaces ; Synthetic aperture radar ; Uncertainty ; Wald test</subject><ispartof>IEEE transactions on image processing, 2021-01, Vol.30, p.5017-5031</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-8bbcfa1a232050a41adbc3e6f930be976b12b6c9eef2d8f2311b8b908cd5a71e3</citedby><cites>FETCH-LOGICAL-c347t-8bbcfa1a232050a41adbc3e6f930be976b12b6c9eef2d8f2311b8b908cd5a71e3</cites><orcidid>0000-0001-9542-759X ; 0000-0003-4619-734X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9426446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9426446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33961559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rekavandi, Aref Miri</creatorcontrib><creatorcontrib>Seghouane, Abd-Krim</creatorcontrib><creatorcontrib>Evans, Robin J.</creatorcontrib><title>Robust Subspace Detectors Based on α-Divergence With Application to Detection in Imaging</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description><![CDATA[Robust variants of Wald, Rao and likelihood ratio (LR) tests for the detection of a signal subspace in a signal interference subspace corrupted by contaminated Gaussian noise are proposed in this paper. They are derived using the <inline-formula> <tex-math notation="LaTeX">\alpha - </tex-math></inline-formula>divergence, and the trade-off between the robustness and the power (the probability of detection) of the tests is adjustable using a single hyperparameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>. It is shown that when <inline-formula> <tex-math notation="LaTeX">\alpha \rightarrow 1 </tex-math></inline-formula>, these tests are equivalent to their well known classical counterparts. For example the robust LR test coincides with the LR test or the matched subspace detector (MSD). Asymptotic results are provided to support the proposed tests and robustness to outliers is obtained using values of <inline-formula> <tex-math notation="LaTeX">\alpha < 1 </tex-math></inline-formula>. Numerical experiments illustrating the performance of these tests on simulated, real functional magnetic resonance imaging (fMRI), hyperspectral and synthetic aperture radar (SAR) data are also presented.]]></description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;α -divergence</subject><subject>Detectors</subject><subject>Gaussian noise</subject><subject>Light rail systems</subject><subject>Likelihood ratio</subject><subject>likelihood ratio test</subject><subject>Magnetic resonance imaging</subject><subject>Maximum likelihood estimation</subject><subject>Outliers (statistics)</subject><subject>Pollution measurement</subject><subject>Random noise</subject><subject>Rao test</subject><subject>Robust detection</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>subspace detectors</subject><subject>Subspaces</subject><subject>Synthetic aperture radar</subject><subject>Uncertainty</subject><subject>Wald test</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLxDAQx4Movu-CIAUvXrpmkvSR4_peWFB8IJ5Kkk7XSLetTSv4sfwifiZTtnrwMpkwv_8w_Ag5ADoBoPL0cXY3YZTBhNMkAS7XyDZIASGlgq37nkZJmICQW2THuTdKQUQQb5ItzmUMUSS3yct9rXvXBQ-9do0yGFxgh6arWxecKYd5UFfB91d4YT-wXWDlgWfbvQbTpimtUZ31464eQ8PHVsFsqRa2WuyRjUKVDvfHd5c8XV0-nt-E89vr2fl0Hhouki5MtTaFAsU4oxFVAlSuDce4kJxqlEmsgenYSMSC5WnBOIBOtaSpySOVAPJdcrLa27T1e4-uy5bWGSxLVWHdu4xFTPDYV-rR43_oW923lb9uoFIpOE_BU3RFmbZ2rsUia1q7VO1nBjQbtGdeezZoz0btPnI0Lu71EvO_wK9nDxyuAIuIf2MpWCxEzH8ABoaGaw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Rekavandi, Aref Miri</creator><creator>Seghouane, Abd-Krim</creator><creator>Evans, Robin J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9542-759X</orcidid><orcidid>https://orcid.org/0000-0003-4619-734X</orcidid></search><sort><creationdate>20210101</creationdate><title>Robust Subspace Detectors Based on α-Divergence With Application to Detection in Imaging</title><author>Rekavandi, Aref Miri ; Seghouane, Abd-Krim ; Evans, Robin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-8bbcfa1a232050a41adbc3e6f930be976b12b6c9eef2d8f2311b8b908cd5a71e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;α -divergence</topic><topic>Detectors</topic><topic>Gaussian noise</topic><topic>Light rail systems</topic><topic>Likelihood ratio</topic><topic>likelihood ratio test</topic><topic>Magnetic resonance imaging</topic><topic>Maximum likelihood estimation</topic><topic>Outliers (statistics)</topic><topic>Pollution measurement</topic><topic>Random noise</topic><topic>Rao test</topic><topic>Robust detection</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>subspace detectors</topic><topic>Subspaces</topic><topic>Synthetic aperture radar</topic><topic>Uncertainty</topic><topic>Wald test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rekavandi, Aref Miri</creatorcontrib><creatorcontrib>Seghouane, Abd-Krim</creatorcontrib><creatorcontrib>Evans, Robin J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rekavandi, Aref Miri</au><au>Seghouane, Abd-Krim</au><au>Evans, Robin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Subspace Detectors Based on α-Divergence With Application to Detection in Imaging</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>30</volume><spage>5017</spage><epage>5031</epage><pages>5017-5031</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract><![CDATA[Robust variants of Wald, Rao and likelihood ratio (LR) tests for the detection of a signal subspace in a signal interference subspace corrupted by contaminated Gaussian noise are proposed in this paper. They are derived using the <inline-formula> <tex-math notation="LaTeX">\alpha - </tex-math></inline-formula>divergence, and the trade-off between the robustness and the power (the probability of detection) of the tests is adjustable using a single hyperparameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>. It is shown that when <inline-formula> <tex-math notation="LaTeX">\alpha \rightarrow 1 </tex-math></inline-formula>, these tests are equivalent to their well known classical counterparts. For example the robust LR test coincides with the LR test or the matched subspace detector (MSD). Asymptotic results are provided to support the proposed tests and robustness to outliers is obtained using values of <inline-formula> <tex-math notation="LaTeX">\alpha < 1 </tex-math></inline-formula>. Numerical experiments illustrating the performance of these tests on simulated, real functional magnetic resonance imaging (fMRI), hyperspectral and synthetic aperture radar (SAR) data are also presented.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>33961559</pmid><doi>10.1109/TIP.2021.3077139</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9542-759X</orcidid><orcidid>https://orcid.org/0000-0003-4619-734X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2021-01, Vol.30, p.5017-5031
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2021_3077139
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">α -divergence
Detectors
Gaussian noise
Light rail systems
Likelihood ratio
likelihood ratio test
Magnetic resonance imaging
Maximum likelihood estimation
Outliers (statistics)
Pollution measurement
Random noise
Rao test
Robust detection
Robustness
Robustness (mathematics)
subspace detectors
Subspaces
Synthetic aperture radar
Uncertainty
Wald test
title Robust Subspace Detectors Based on α-Divergence With Application to Detection in Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Subspace%20Detectors%20Based%20on%20%CE%B1-Divergence%20With%20Application%20to%20Detection%20in%20Imaging&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Rekavandi,%20Aref%20Miri&rft.date=2021-01-01&rft.volume=30&rft.spage=5017&rft.epage=5031&rft.pages=5017-5031&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3077139&rft_dat=%3Cproquest_RIE%3E2524362520%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528943381&rft_id=info:pmid/33961559&rft_ieee_id=9426446&rfr_iscdi=true