MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos
Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (ME...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2021, Vol.30, p.3956-3969 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3969 |
---|---|
container_issue | |
container_start_page | 3956 |
container_title | IEEE transactions on image processing |
container_volume | 30 |
creator | Wang, Su-Jing He, Ying Li, Jingting Fu, Xiaolan |
description | Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME) 2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset. |
doi_str_mv | 10.1109/TIP.2021.3064258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2021_3064258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9392303</ieee_id><sourcerecordid>2509292489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-224c675b5c7e82a208a7fa9e2a3918f5e5cfd1ef684027158eaa25db674c89963</originalsourceid><addsrcrecordid>eNpdkc9LKzEQx4Mo6lPvgiCBd3mXrfm5SbxJqVpoVah6XdLtrES3m74kq77__kVbPXiaYebzHfjOF6FjSgaUEnN2P74bMMLogJNSMKm30D41ghaECLadeyJVoagwe-hXjM-EUCFpuYv2OFdal7rcR246mt1AOscXeOi7V9_2yfnOtvgG-vBZ0psPL7jxAc9WPiXXPeFp3yZXzGrbAp66Ovhi9L4KEGOW4nGXILzaNmLX4YnP-KNbgI-HaKfJUzja1AP0cDm6H14Xk9ur8fBiUtRcqFQwJupSybmsFWhmGdFWNdYAs9xQ3UiQdbOg0JRaEKao1GAtk4t5qUStjSn5AfqzvrsK_m8PMVVLF2toW9uB72PFJFGKGWNIRn__QJ99H7L7T8oww4Q2mSJrKhuNMUBTrYJb2vCvoqT6iKHKMVQfMVSbGLLkdHO4ny9h8S34-nsGTtaAA4DvteGGccL5fyB0isI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509292489</pqid></control><display><type>article</type><title>MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Su-Jing ; He, Ying ; Li, Jingting ; Fu, Xiaolan</creator><creatorcontrib>Wang, Su-Jing ; He, Ying ; Li, Jingting ; Fu, Xiaolan</creatorcontrib><description>Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME) 2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3064258</identifier><identifier>PMID: 33788686</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Clips ; Convolution ; Convolutional neural network ; Convolutional neural networks ; Datasets ; deep learning ; detection ; Feature extraction ; Intervals ; long videos ; Measurement ; micro-expression spotting ; Modules ; Neural networks ; Performance evaluation ; Regression analysis ; Spatiotemporal phenomena ; Two dimensional displays ; Video ; Videos</subject><ispartof>IEEE transactions on image processing, 2021, Vol.30, p.3956-3969</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-224c675b5c7e82a208a7fa9e2a3918f5e5cfd1ef684027158eaa25db674c89963</citedby><cites>FETCH-LOGICAL-c347t-224c675b5c7e82a208a7fa9e2a3918f5e5cfd1ef684027158eaa25db674c89963</cites><orcidid>0000-0002-6944-1037 ; 0000-0002-7098-7598 ; 0000-0001-8742-8488 ; 0000-0002-8774-6328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9392303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9392303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33788686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Su-Jing</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Li, Jingting</creatorcontrib><creatorcontrib>Fu, Xiaolan</creatorcontrib><title>MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME) 2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset.</description><subject>Artificial neural networks</subject><subject>Clips</subject><subject>Convolution</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>deep learning</subject><subject>detection</subject><subject>Feature extraction</subject><subject>Intervals</subject><subject>long videos</subject><subject>Measurement</subject><subject>micro-expression spotting</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Regression analysis</subject><subject>Spatiotemporal phenomena</subject><subject>Two dimensional displays</subject><subject>Video</subject><subject>Videos</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc9LKzEQx4Mo6lPvgiCBd3mXrfm5SbxJqVpoVah6XdLtrES3m74kq77__kVbPXiaYebzHfjOF6FjSgaUEnN2P74bMMLogJNSMKm30D41ghaECLadeyJVoagwe-hXjM-EUCFpuYv2OFdal7rcR246mt1AOscXeOi7V9_2yfnOtvgG-vBZ0psPL7jxAc9WPiXXPeFp3yZXzGrbAp66Ovhi9L4KEGOW4nGXILzaNmLX4YnP-KNbgI-HaKfJUzja1AP0cDm6H14Xk9ur8fBiUtRcqFQwJupSybmsFWhmGdFWNdYAs9xQ3UiQdbOg0JRaEKao1GAtk4t5qUStjSn5AfqzvrsK_m8PMVVLF2toW9uB72PFJFGKGWNIRn__QJ99H7L7T8oww4Q2mSJrKhuNMUBTrYJb2vCvoqT6iKHKMVQfMVSbGLLkdHO4ny9h8S34-nsGTtaAA4DvteGGccL5fyB0isI</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Su-Jing</creator><creator>He, Ying</creator><creator>Li, Jingting</creator><creator>Fu, Xiaolan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6944-1037</orcidid><orcidid>https://orcid.org/0000-0002-7098-7598</orcidid><orcidid>https://orcid.org/0000-0001-8742-8488</orcidid><orcidid>https://orcid.org/0000-0002-8774-6328</orcidid></search><sort><creationdate>2021</creationdate><title>MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos</title><author>Wang, Su-Jing ; He, Ying ; Li, Jingting ; Fu, Xiaolan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-224c675b5c7e82a208a7fa9e2a3918f5e5cfd1ef684027158eaa25db674c89963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Clips</topic><topic>Convolution</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>deep learning</topic><topic>detection</topic><topic>Feature extraction</topic><topic>Intervals</topic><topic>long videos</topic><topic>Measurement</topic><topic>micro-expression spotting</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Regression analysis</topic><topic>Spatiotemporal phenomena</topic><topic>Two dimensional displays</topic><topic>Video</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Su-Jing</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Li, Jingting</creatorcontrib><creatorcontrib>Fu, Xiaolan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Su-Jing</au><au>He, Ying</au><au>Li, Jingting</au><au>Fu, Xiaolan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2021</date><risdate>2021</risdate><volume>30</volume><spage>3956</spage><epage>3969</epage><pages>3956-3969</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Micro-expression spotting is a fundamental step in the micro-expression analysis. This paper proposes a novel network based convolutional neural network (CNN) for spotting multi-scale spontaneous micro-expression intervals in long videos. We named the network as Micro-Expression Spotting Network (MESNet). It is composed of three modules. The first module is a 2+1D Spatiotemporal Convolutional Network, which uses 2D convolution to extract spatial features and 1D convolution to extract temporal features. The second module is a Clip Proposal Network, which gives some proposed micro-expression clips. The last module is a Classification Regression Network, which classifies the proposed clips to micro-expression or not, and further regresses their temporal boundaries. We also propose a novel evaluation metric for spotting micro-expression. Extensive experiments have been conducted on the two long video datasets: CAS(ME) 2 and SAMM, and the leave-one-subject-out cross-validation is used to evaluate the spotting performance. Results show that the proposed MESNet effectively enhances the F1-score metric. And comparative results show the proposed MESNet has achieved a good performance, which outperforms other state-of-the-art methods, especially in the SAMM dataset.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33788686</pmid><doi>10.1109/TIP.2021.3064258</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6944-1037</orcidid><orcidid>https://orcid.org/0000-0002-7098-7598</orcidid><orcidid>https://orcid.org/0000-0001-8742-8488</orcidid><orcidid>https://orcid.org/0000-0002-8774-6328</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2021, Vol.30, p.3956-3969 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2021_3064258 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Clips Convolution Convolutional neural network Convolutional neural networks Datasets deep learning detection Feature extraction Intervals long videos Measurement micro-expression spotting Modules Neural networks Performance evaluation Regression analysis Spatiotemporal phenomena Two dimensional displays Video Videos |
title | MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MESNet:%20A%20Convolutional%20Neural%20Network%20for%20Spotting%20Multi-Scale%20Micro-Expression%20Intervals%20in%20Long%20Videos&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Su-Jing&rft.date=2021&rft.volume=30&rft.spage=3956&rft.epage=3969&rft.pages=3956-3969&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3064258&rft_dat=%3Cproquest_RIE%3E2509292489%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509292489&rft_id=info:pmid/33788686&rft_ieee_id=9392303&rfr_iscdi=true |