Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction

HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020, Vol.29, p.7511-7524
Hauptverfasser: Cogalan, Ugur, Akyuz, Ahmet Oguz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7524
container_issue
container_start_page 7511
container_title IEEE transactions on image processing
container_volume 29
creator Cogalan, Ugur
Akyuz, Ahmet Oguz
description HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can perform per-pixel exposure modulation, it is now possible to capture all of the required exposures within a single shot. The new challenge then becomes how to best combine different pixels with different exposure values into a single full-resolution and low-noise HDR image. We propose a joint multi-exposure frame deinterlacing and denoising algorithm powered by deep convolutional neural networks (DCNN). In our algorithm, we first train two DCNNs, with one tuned for reconstructing low exposures and the other for high exposures. Each DCNN takes the same mosaicked dual-ISO input image and outputs either the low exposure or high exposure depending on the type of the network. The resulting exposures can be demosaicked and converted to the desired target color space prior to HDR assembly. Our evaluations indicate that the quality of our results significantly surpasses the state-of-the-art in single-image HDR reconstruction algorithms.
doi_str_mv 10.1109/TIP.2020.3004014
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2020_3004014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9127139</ieee_id><sourcerecordid>2424190627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3ab94b5cbebab73bf731e8a2d4d33ab13b50b8023c9dffaa7795b901cb3838323</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8FnzvvknRpHsWpmwwm23wOSZpqR21m0j7435uxIQf383N38CXkFmGCCPJhu3ifUKAwYQAckJ-REUqOearoecqhELlALi_JVYw7SESB0xFZz5zbZ2--6fps5pJ3odW26T4z3VWp0_kmHqrah2yTktZlmy-f2EG3-WKzyuazdbZ21nexD4PtG99dk4tat9HdnOKYfLw8b5_m-XL1unh6XOaWsbLPmTaSm8IaZ7QRzNSCoSs1rXjF0gyZKcCUQJmVVV1rLYQsjAS0hpXJKBuT--PdffA_g4u92vkhdOmlopxylDClIlFwpGzwMQZXq31ovnX4VQjqoJxKyqmDcuqkXFq5O640zrl_XCIVyCT7A2nyaOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424190627</pqid></control><display><type>article</type><title>Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Cogalan, Ugur ; Akyuz, Ahmet Oguz</creator><creatorcontrib>Cogalan, Ugur ; Akyuz, Ahmet Oguz</creatorcontrib><description>HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can perform per-pixel exposure modulation, it is now possible to capture all of the required exposures within a single shot. The new challenge then becomes how to best combine different pixels with different exposure values into a single full-resolution and low-noise HDR image. We propose a joint multi-exposure frame deinterlacing and denoising algorithm powered by deep convolutional neural networks (DCNN). In our algorithm, we first train two DCNNs, with one tuned for reconstructing low exposures and the other for high exposures. Each DCNN takes the same mosaicked dual-ISO input image and outputs either the low exposure or high exposure depending on the type of the network. The resulting exposures can be demosaicked and converted to the desired target color space prior to HDR assembly. Our evaluations indicate that the quality of our results significantly surpasses the state-of-the-art in single-image HDR reconstruction algorithms.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.3004014</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cameras ; deep learning ; Dual-ISO ; Exposure ; HDR imaging ; Image reconstruction ; Image resolution ; ISO ; Moving object recognition ; noise ; Noise reduction ; Pixels ; Sensors</subject><ispartof>IEEE transactions on image processing, 2020, Vol.29, p.7511-7524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3ab94b5cbebab73bf731e8a2d4d33ab13b50b8023c9dffaa7795b901cb3838323</citedby><cites>FETCH-LOGICAL-c338t-3ab94b5cbebab73bf731e8a2d4d33ab13b50b8023c9dffaa7795b901cb3838323</cites><orcidid>0000-0003-1279-6918 ; 0000-0001-7685-5572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9127139$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9127139$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cogalan, Ugur</creatorcontrib><creatorcontrib>Akyuz, Ahmet Oguz</creatorcontrib><title>Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can perform per-pixel exposure modulation, it is now possible to capture all of the required exposures within a single shot. The new challenge then becomes how to best combine different pixels with different exposure values into a single full-resolution and low-noise HDR image. We propose a joint multi-exposure frame deinterlacing and denoising algorithm powered by deep convolutional neural networks (DCNN). In our algorithm, we first train two DCNNs, with one tuned for reconstructing low exposures and the other for high exposures. Each DCNN takes the same mosaicked dual-ISO input image and outputs either the low exposure or high exposure depending on the type of the network. The resulting exposures can be demosaicked and converted to the desired target color space prior to HDR assembly. Our evaluations indicate that the quality of our results significantly surpasses the state-of-the-art in single-image HDR reconstruction algorithms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>deep learning</subject><subject>Dual-ISO</subject><subject>Exposure</subject><subject>HDR imaging</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>ISO</subject><subject>Moving object recognition</subject><subject>noise</subject><subject>Noise reduction</subject><subject>Pixels</subject><subject>Sensors</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi8FnzvvknRpHsWpmwwm23wOSZpqR21m0j7435uxIQf383N38CXkFmGCCPJhu3ifUKAwYQAckJ-REUqOearoecqhELlALi_JVYw7SESB0xFZz5zbZ2--6fps5pJ3odW26T4z3VWp0_kmHqrah2yTktZlmy-f2EG3-WKzyuazdbZ21nexD4PtG99dk4tat9HdnOKYfLw8b5_m-XL1unh6XOaWsbLPmTaSm8IaZ7QRzNSCoSs1rXjF0gyZKcCUQJmVVV1rLYQsjAS0hpXJKBuT--PdffA_g4u92vkhdOmlopxylDClIlFwpGzwMQZXq31ovnX4VQjqoJxKyqmDcuqkXFq5O640zrl_XCIVyCT7A2nyaOY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cogalan, Ugur</creator><creator>Akyuz, Ahmet Oguz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1279-6918</orcidid><orcidid>https://orcid.org/0000-0001-7685-5572</orcidid></search><sort><creationdate>2020</creationdate><title>Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction</title><author>Cogalan, Ugur ; Akyuz, Ahmet Oguz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3ab94b5cbebab73bf731e8a2d4d33ab13b50b8023c9dffaa7795b901cb3838323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>deep learning</topic><topic>Dual-ISO</topic><topic>Exposure</topic><topic>HDR imaging</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>ISO</topic><topic>Moving object recognition</topic><topic>noise</topic><topic>Noise reduction</topic><topic>Pixels</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cogalan, Ugur</creatorcontrib><creatorcontrib>Akyuz, Ahmet Oguz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cogalan, Ugur</au><au>Akyuz, Ahmet Oguz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2020</date><risdate>2020</risdate><volume>29</volume><spage>7511</spage><epage>7524</epage><pages>7511-7524</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can perform per-pixel exposure modulation, it is now possible to capture all of the required exposures within a single shot. The new challenge then becomes how to best combine different pixels with different exposure values into a single full-resolution and low-noise HDR image. We propose a joint multi-exposure frame deinterlacing and denoising algorithm powered by deep convolutional neural networks (DCNN). In our algorithm, we first train two DCNNs, with one tuned for reconstructing low exposures and the other for high exposures. Each DCNN takes the same mosaicked dual-ISO input image and outputs either the low exposure or high exposure depending on the type of the network. The resulting exposures can be demosaicked and converted to the desired target color space prior to HDR assembly. Our evaluations indicate that the quality of our results significantly surpasses the state-of-the-art in single-image HDR reconstruction algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2020.3004014</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1279-6918</orcidid><orcidid>https://orcid.org/0000-0001-7685-5572</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2020, Vol.29, p.7511-7524
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2020_3004014
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Cameras
deep learning
Dual-ISO
Exposure
HDR imaging
Image reconstruction
Image resolution
ISO
Moving object recognition
noise
Noise reduction
Pixels
Sensors
title Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Joint%20Deinterlacing%20and%20Denoising%20for%20Single%20Shot%20Dual-ISO%20HDR%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Cogalan,%20Ugur&rft.date=2020&rft.volume=29&rft.spage=7511&rft.epage=7524&rft.pages=7511-7524&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.3004014&rft_dat=%3Cproquest_RIE%3E2424190627%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424190627&rft_id=info:pmid/&rft_ieee_id=9127139&rfr_iscdi=true