Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction
HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can per...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020, Vol.29, p.7511-7524 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7524 |
---|---|
container_issue | |
container_start_page | 7511 |
container_title | IEEE transactions on image processing |
container_volume | 29 |
creator | Cogalan, Ugur Akyuz, Ahmet Oguz |
description | HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can perform per-pixel exposure modulation, it is now possible to capture all of the required exposures within a single shot. The new challenge then becomes how to best combine different pixels with different exposure values into a single full-resolution and low-noise HDR image. We propose a joint multi-exposure frame deinterlacing and denoising algorithm powered by deep convolutional neural networks (DCNN). In our algorithm, we first train two DCNNs, with one tuned for reconstructing low exposures and the other for high exposures. Each DCNN takes the same mosaicked dual-ISO input image and outputs either the low exposure or high exposure depending on the type of the network. The resulting exposures can be demosaicked and converted to the desired target color space prior to HDR assembly. Our evaluations indicate that the quality of our results significantly surpasses the state-of-the-art in single-image HDR reconstruction algorithms. |
doi_str_mv | 10.1109/TIP.2020.3004014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2020_3004014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9127139</ieee_id><sourcerecordid>2424190627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3ab94b5cbebab73bf731e8a2d4d33ab13b50b8023c9dffaa7795b901cb3838323</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8FnzvvknRpHsWpmwwm23wOSZpqR21m0j7435uxIQf383N38CXkFmGCCPJhu3ifUKAwYQAckJ-REUqOearoecqhELlALi_JVYw7SESB0xFZz5zbZ2--6fps5pJ3odW26T4z3VWp0_kmHqrah2yTktZlmy-f2EG3-WKzyuazdbZ21nexD4PtG99dk4tat9HdnOKYfLw8b5_m-XL1unh6XOaWsbLPmTaSm8IaZ7QRzNSCoSs1rXjF0gyZKcCUQJmVVV1rLYQsjAS0hpXJKBuT--PdffA_g4u92vkhdOmlopxylDClIlFwpGzwMQZXq31ovnX4VQjqoJxKyqmDcuqkXFq5O640zrl_XCIVyCT7A2nyaOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424190627</pqid></control><display><type>article</type><title>Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Cogalan, Ugur ; Akyuz, Ahmet Oguz</creator><creatorcontrib>Cogalan, Ugur ; Akyuz, Ahmet Oguz</creatorcontrib><description>HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can perform per-pixel exposure modulation, it is now possible to capture all of the required exposures within a single shot. The new challenge then becomes how to best combine different pixels with different exposure values into a single full-resolution and low-noise HDR image. We propose a joint multi-exposure frame deinterlacing and denoising algorithm powered by deep convolutional neural networks (DCNN). In our algorithm, we first train two DCNNs, with one tuned for reconstructing low exposures and the other for high exposures. Each DCNN takes the same mosaicked dual-ISO input image and outputs either the low exposure or high exposure depending on the type of the network. The resulting exposures can be demosaicked and converted to the desired target color space prior to HDR assembly. Our evaluations indicate that the quality of our results significantly surpasses the state-of-the-art in single-image HDR reconstruction algorithms.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.3004014</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Cameras ; deep learning ; Dual-ISO ; Exposure ; HDR imaging ; Image reconstruction ; Image resolution ; ISO ; Moving object recognition ; noise ; Noise reduction ; Pixels ; Sensors</subject><ispartof>IEEE transactions on image processing, 2020, Vol.29, p.7511-7524</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3ab94b5cbebab73bf731e8a2d4d33ab13b50b8023c9dffaa7795b901cb3838323</citedby><cites>FETCH-LOGICAL-c338t-3ab94b5cbebab73bf731e8a2d4d33ab13b50b8023c9dffaa7795b901cb3838323</cites><orcidid>0000-0003-1279-6918 ; 0000-0001-7685-5572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9127139$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9127139$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cogalan, Ugur</creatorcontrib><creatorcontrib>Akyuz, Ahmet Oguz</creatorcontrib><title>Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can perform per-pixel exposure modulation, it is now possible to capture all of the required exposures within a single shot. The new challenge then becomes how to best combine different pixels with different exposure values into a single full-resolution and low-noise HDR image. We propose a joint multi-exposure frame deinterlacing and denoising algorithm powered by deep convolutional neural networks (DCNN). In our algorithm, we first train two DCNNs, with one tuned for reconstructing low exposures and the other for high exposures. Each DCNN takes the same mosaicked dual-ISO input image and outputs either the low exposure or high exposure depending on the type of the network. The resulting exposures can be demosaicked and converted to the desired target color space prior to HDR assembly. Our evaluations indicate that the quality of our results significantly surpasses the state-of-the-art in single-image HDR reconstruction algorithms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>deep learning</subject><subject>Dual-ISO</subject><subject>Exposure</subject><subject>HDR imaging</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>ISO</subject><subject>Moving object recognition</subject><subject>noise</subject><subject>Noise reduction</subject><subject>Pixels</subject><subject>Sensors</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi8FnzvvknRpHsWpmwwm23wOSZpqR21m0j7435uxIQf383N38CXkFmGCCPJhu3ifUKAwYQAckJ-REUqOearoecqhELlALi_JVYw7SESB0xFZz5zbZ2--6fps5pJ3odW26T4z3VWp0_kmHqrah2yTktZlmy-f2EG3-WKzyuazdbZ21nexD4PtG99dk4tat9HdnOKYfLw8b5_m-XL1unh6XOaWsbLPmTaSm8IaZ7QRzNSCoSs1rXjF0gyZKcCUQJmVVV1rLYQsjAS0hpXJKBuT--PdffA_g4u92vkhdOmlopxylDClIlFwpGzwMQZXq31ovnX4VQjqoJxKyqmDcuqkXFq5O640zrl_XCIVyCT7A2nyaOY</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Cogalan, Ugur</creator><creator>Akyuz, Ahmet Oguz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1279-6918</orcidid><orcidid>https://orcid.org/0000-0001-7685-5572</orcidid></search><sort><creationdate>2020</creationdate><title>Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction</title><author>Cogalan, Ugur ; Akyuz, Ahmet Oguz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3ab94b5cbebab73bf731e8a2d4d33ab13b50b8023c9dffaa7795b901cb3838323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>deep learning</topic><topic>Dual-ISO</topic><topic>Exposure</topic><topic>HDR imaging</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>ISO</topic><topic>Moving object recognition</topic><topic>noise</topic><topic>Noise reduction</topic><topic>Pixels</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cogalan, Ugur</creatorcontrib><creatorcontrib>Akyuz, Ahmet Oguz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cogalan, Ugur</au><au>Akyuz, Ahmet Oguz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2020</date><risdate>2020</risdate><volume>29</volume><spage>7511</spage><epage>7524</epage><pages>7511-7524</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>HDR images have traditionally been obtained by merging multiple exposures each captured with a different exposure time. However, this approach entails longer capture times and necessitates deghosting if the captured scene contains moving objects. With the advent of modern camera sensors that can perform per-pixel exposure modulation, it is now possible to capture all of the required exposures within a single shot. The new challenge then becomes how to best combine different pixels with different exposure values into a single full-resolution and low-noise HDR image. We propose a joint multi-exposure frame deinterlacing and denoising algorithm powered by deep convolutional neural networks (DCNN). In our algorithm, we first train two DCNNs, with one tuned for reconstructing low exposures and the other for high exposures. Each DCNN takes the same mosaicked dual-ISO input image and outputs either the low exposure or high exposure depending on the type of the network. The resulting exposures can be demosaicked and converted to the desired target color space prior to HDR assembly. Our evaluations indicate that the quality of our results significantly surpasses the state-of-the-art in single-image HDR reconstruction algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2020.3004014</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1279-6918</orcidid><orcidid>https://orcid.org/0000-0001-7685-5572</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2020, Vol.29, p.7511-7524 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2020_3004014 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Cameras deep learning Dual-ISO Exposure HDR imaging Image reconstruction Image resolution ISO Moving object recognition noise Noise reduction Pixels Sensors |
title | Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Joint%20Deinterlacing%20and%20Denoising%20for%20Single%20Shot%20Dual-ISO%20HDR%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Cogalan,%20Ugur&rft.date=2020&rft.volume=29&rft.spage=7511&rft.epage=7524&rft.pages=7511-7524&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.3004014&rft_dat=%3Cproquest_RIE%3E2424190627%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424190627&rft_id=info:pmid/&rft_ieee_id=9127139&rfr_iscdi=true |