Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning
Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020-01, Vol.29, p.9387-9399 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9399 |
---|---|
container_issue | |
container_start_page | 9387 |
container_title | IEEE transactions on image processing |
container_volume | 29 |
creator | Ye, Mang Lan, Xiangyuan Leng, Qingming Shen, Jianbing |
description | Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations by handling the modality-discrepancy in feature level. However, the modality difference in classifier level has received much less attention, resulting in limited discriminability. In this paper, we propose a novel modality-aware collaborative ensemble (MACE) learning method with middle-level sharable two-stream network (MSTN) for VT-ReID, which handles the modality-discrepancy in both feature level and classifier level. In feature level, MSTN achieves much better performance than existing methods by capturing sharable discriminative middle-level features in convolutional layers. In classifier level, we introduce both modality-specific and modality-sharable identity classifiers for two modalities to handle the modality discrepancy. To utilize the complementary information among different classifiers, we propose an ensemble learning scheme to incorporate the modality sharable classifier and the modality specific classifiers. In addition, we introduce a collaborative learning strategy, which regularizes modality-specific identity predictions and the ensemble outputs. Extensive experiments on two cross-modality datasets demonstrate that the proposed method outperforms current state-of-the-art by a large margin, achieving rank-1/mAP accuracy 51.64%/50.11% on the SYSU-MM01 dataset, and 72.37%/69.09% on the RegDB dataset. |
doi_str_mv | 10.1109/TIP.2020.2998275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2020_2998275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9107428</ieee_id><sourcerecordid>2451191622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-61b49f4964d9a3bc769614da0bf4d07cff394c65b3360c89674eb8f576a2f3293</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdR_KjeBUECXrykzn5kN3sspWqhoohevIRNMisraVJ300r_vVtae_A0w8wzw8tDyCWFIaWg796mL0MGDIZM65yp7ICcUi1oCiDYYewhU6miQp-QsxC-AKjIqDwmJ5wpIRnPT8nH2HchpE9dbRrXr5MX9KFrk1dMpzW2vbOuMr2Lk5UzyR-Vjn6Mx2TcNY0pOx-BFSaTNuC8bDCZofGtaz_PyZE1TcCLXR2Q9_vJ2_gxnT0_TMejWVpxofpU0lJoK7QUtTa8rJTUkoraQGlFDaqylmtRyazkXEKVa6kElrnNlDTMcqb5gNxu_y58973E0BdzFyqM2VrslqFgggNXWa4gojf_0K9u6duYLlIZpZpKxiIFW6rauPFoi4V3c-PXBYVi472I3ouN92LnPZ5c7x4vyznW-4M_0RG42gIOEfdrTUEJlvNfmVKFrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451191622</pqid></control><display><type>article</type><title>Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Mang ; Lan, Xiangyuan ; Leng, Qingming ; Shen, Jianbing</creator><creatorcontrib>Ye, Mang ; Lan, Xiangyuan ; Leng, Qingming ; Shen, Jianbing</creatorcontrib><description>Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations by handling the modality-discrepancy in feature level. However, the modality difference in classifier level has received much less attention, resulting in limited discriminability. In this paper, we propose a novel modality-aware collaborative ensemble (MACE) learning method with middle-level sharable two-stream network (MSTN) for VT-ReID, which handles the modality-discrepancy in both feature level and classifier level. In feature level, MSTN achieves much better performance than existing methods by capturing sharable discriminative middle-level features in convolutional layers. In classifier level, we introduce both modality-specific and modality-sharable identity classifiers for two modalities to handle the modality discrepancy. To utilize the complementary information among different classifiers, we propose an ensemble learning scheme to incorporate the modality sharable classifier and the modality specific classifiers. In addition, we introduce a collaborative learning strategy, which regularizes modality-specific identity predictions and the ensemble outputs. Extensive experiments on two cross-modality datasets demonstrate that the proposed method outperforms current state-of-the-art by a large margin, achieving rank-1/mAP accuracy 51.64%/50.11% on the SYSU-MM01 dataset, and 72.37%/69.09% on the RegDB dataset.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.2998275</identifier><identifier>PMID: 32746238</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cameras ; Classifiers ; Collaboration ; collaborative ensemble learning ; Collaborative work ; Cross-modality ; Datasets ; Ensemble learning ; Face recognition ; Handles ; Learning systems ; person re-identification ; Task analysis ; Visualization</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.9387-9399</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-61b49f4964d9a3bc769614da0bf4d07cff394c65b3360c89674eb8f576a2f3293</citedby><cites>FETCH-LOGICAL-c347t-61b49f4964d9a3bc769614da0bf4d07cff394c65b3360c89674eb8f576a2f3293</cites><orcidid>0000-0003-3989-7655 ; 0000-0003-2656-3082 ; 0000-0002-9395-5863 ; 0000-0001-8564-0346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9107428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9107428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32746238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Mang</creatorcontrib><creatorcontrib>Lan, Xiangyuan</creatorcontrib><creatorcontrib>Leng, Qingming</creatorcontrib><creatorcontrib>Shen, Jianbing</creatorcontrib><title>Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations by handling the modality-discrepancy in feature level. However, the modality difference in classifier level has received much less attention, resulting in limited discriminability. In this paper, we propose a novel modality-aware collaborative ensemble (MACE) learning method with middle-level sharable two-stream network (MSTN) for VT-ReID, which handles the modality-discrepancy in both feature level and classifier level. In feature level, MSTN achieves much better performance than existing methods by capturing sharable discriminative middle-level features in convolutional layers. In classifier level, we introduce both modality-specific and modality-sharable identity classifiers for two modalities to handle the modality discrepancy. To utilize the complementary information among different classifiers, we propose an ensemble learning scheme to incorporate the modality sharable classifier and the modality specific classifiers. In addition, we introduce a collaborative learning strategy, which regularizes modality-specific identity predictions and the ensemble outputs. Extensive experiments on two cross-modality datasets demonstrate that the proposed method outperforms current state-of-the-art by a large margin, achieving rank-1/mAP accuracy 51.64%/50.11% on the SYSU-MM01 dataset, and 72.37%/69.09% on the RegDB dataset.</description><subject>Cameras</subject><subject>Classifiers</subject><subject>Collaboration</subject><subject>collaborative ensemble learning</subject><subject>Collaborative work</subject><subject>Cross-modality</subject><subject>Datasets</subject><subject>Ensemble learning</subject><subject>Face recognition</subject><subject>Handles</subject><subject>Learning systems</subject><subject>person re-identification</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdR_KjeBUECXrykzn5kN3sspWqhoohevIRNMisraVJ300r_vVtae_A0w8wzw8tDyCWFIaWg796mL0MGDIZM65yp7ICcUi1oCiDYYewhU6miQp-QsxC-AKjIqDwmJ5wpIRnPT8nH2HchpE9dbRrXr5MX9KFrk1dMpzW2vbOuMr2Lk5UzyR-Vjn6Mx2TcNY0pOx-BFSaTNuC8bDCZofGtaz_PyZE1TcCLXR2Q9_vJ2_gxnT0_TMejWVpxofpU0lJoK7QUtTa8rJTUkoraQGlFDaqylmtRyazkXEKVa6kElrnNlDTMcqb5gNxu_y58973E0BdzFyqM2VrslqFgggNXWa4gojf_0K9u6duYLlIZpZpKxiIFW6rauPFoi4V3c-PXBYVi472I3ouN92LnPZ5c7x4vyznW-4M_0RG42gIOEfdrTUEJlvNfmVKFrA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ye, Mang</creator><creator>Lan, Xiangyuan</creator><creator>Leng, Qingming</creator><creator>Shen, Jianbing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3989-7655</orcidid><orcidid>https://orcid.org/0000-0003-2656-3082</orcidid><orcidid>https://orcid.org/0000-0002-9395-5863</orcidid><orcidid>https://orcid.org/0000-0001-8564-0346</orcidid></search><sort><creationdate>20200101</creationdate><title>Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning</title><author>Ye, Mang ; Lan, Xiangyuan ; Leng, Qingming ; Shen, Jianbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-61b49f4964d9a3bc769614da0bf4d07cff394c65b3360c89674eb8f576a2f3293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Classifiers</topic><topic>Collaboration</topic><topic>collaborative ensemble learning</topic><topic>Collaborative work</topic><topic>Cross-modality</topic><topic>Datasets</topic><topic>Ensemble learning</topic><topic>Face recognition</topic><topic>Handles</topic><topic>Learning systems</topic><topic>person re-identification</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Mang</creatorcontrib><creatorcontrib>Lan, Xiangyuan</creatorcontrib><creatorcontrib>Leng, Qingming</creatorcontrib><creatorcontrib>Shen, Jianbing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Mang</au><au>Lan, Xiangyuan</au><au>Leng, Qingming</au><au>Shen, Jianbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>9387</spage><epage>9399</epage><pages>9387-9399</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations by handling the modality-discrepancy in feature level. However, the modality difference in classifier level has received much less attention, resulting in limited discriminability. In this paper, we propose a novel modality-aware collaborative ensemble (MACE) learning method with middle-level sharable two-stream network (MSTN) for VT-ReID, which handles the modality-discrepancy in both feature level and classifier level. In feature level, MSTN achieves much better performance than existing methods by capturing sharable discriminative middle-level features in convolutional layers. In classifier level, we introduce both modality-specific and modality-sharable identity classifiers for two modalities to handle the modality discrepancy. To utilize the complementary information among different classifiers, we propose an ensemble learning scheme to incorporate the modality sharable classifier and the modality specific classifiers. In addition, we introduce a collaborative learning strategy, which regularizes modality-specific identity predictions and the ensemble outputs. Extensive experiments on two cross-modality datasets demonstrate that the proposed method outperforms current state-of-the-art by a large margin, achieving rank-1/mAP accuracy 51.64%/50.11% on the SYSU-MM01 dataset, and 72.37%/69.09% on the RegDB dataset.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32746238</pmid><doi>10.1109/TIP.2020.2998275</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3989-7655</orcidid><orcidid>https://orcid.org/0000-0003-2656-3082</orcidid><orcidid>https://orcid.org/0000-0002-9395-5863</orcidid><orcidid>https://orcid.org/0000-0001-8564-0346</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2020-01, Vol.29, p.9387-9399 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2020_2998275 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Classifiers Collaboration collaborative ensemble learning Collaborative work Cross-modality Datasets Ensemble learning Face recognition Handles Learning systems person re-identification Task analysis Visualization |
title | Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Modality%20Person%20Re-Identification%20via%20Modality-Aware%20Collaborative%20Ensemble%20Learning&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ye,%20Mang&rft.date=2020-01-01&rft.volume=29&rft.spage=9387&rft.epage=9399&rft.pages=9387-9399&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.2998275&rft_dat=%3Cproquest_RIE%3E2451191622%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451191622&rft_id=info:pmid/32746238&rft_ieee_id=9107428&rfr_iscdi=true |