Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning

Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020-01, Vol.29, p.9387-9399
Hauptverfasser: Ye, Mang, Lan, Xiangyuan, Leng, Qingming, Shen, Jianbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9399
container_issue
container_start_page 9387
container_title IEEE transactions on image processing
container_volume 29
creator Ye, Mang
Lan, Xiangyuan
Leng, Qingming
Shen, Jianbing
description Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations by handling the modality-discrepancy in feature level. However, the modality difference in classifier level has received much less attention, resulting in limited discriminability. In this paper, we propose a novel modality-aware collaborative ensemble (MACE) learning method with middle-level sharable two-stream network (MSTN) for VT-ReID, which handles the modality-discrepancy in both feature level and classifier level. In feature level, MSTN achieves much better performance than existing methods by capturing sharable discriminative middle-level features in convolutional layers. In classifier level, we introduce both modality-specific and modality-sharable identity classifiers for two modalities to handle the modality discrepancy. To utilize the complementary information among different classifiers, we propose an ensemble learning scheme to incorporate the modality sharable classifier and the modality specific classifiers. In addition, we introduce a collaborative learning strategy, which regularizes modality-specific identity predictions and the ensemble outputs. Extensive experiments on two cross-modality datasets demonstrate that the proposed method outperforms current state-of-the-art by a large margin, achieving rank-1/mAP accuracy 51.64%/50.11% on the SYSU-MM01 dataset, and 72.37%/69.09% on the RegDB dataset.
doi_str_mv 10.1109/TIP.2020.2998275
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2020_2998275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9107428</ieee_id><sourcerecordid>2451191622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-61b49f4964d9a3bc769614da0bf4d07cff394c65b3360c89674eb8f576a2f3293</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdR_KjeBUECXrykzn5kN3sspWqhoohevIRNMisraVJ300r_vVtae_A0w8wzw8tDyCWFIaWg796mL0MGDIZM65yp7ICcUi1oCiDYYewhU6miQp-QsxC-AKjIqDwmJ5wpIRnPT8nH2HchpE9dbRrXr5MX9KFrk1dMpzW2vbOuMr2Lk5UzyR-Vjn6Mx2TcNY0pOx-BFSaTNuC8bDCZofGtaz_PyZE1TcCLXR2Q9_vJ2_gxnT0_TMejWVpxofpU0lJoK7QUtTa8rJTUkoraQGlFDaqylmtRyazkXEKVa6kElrnNlDTMcqb5gNxu_y58973E0BdzFyqM2VrslqFgggNXWa4gojf_0K9u6duYLlIZpZpKxiIFW6rauPFoi4V3c-PXBYVi472I3ouN92LnPZ5c7x4vyznW-4M_0RG42gIOEfdrTUEJlvNfmVKFrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451191622</pqid></control><display><type>article</type><title>Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Mang ; Lan, Xiangyuan ; Leng, Qingming ; Shen, Jianbing</creator><creatorcontrib>Ye, Mang ; Lan, Xiangyuan ; Leng, Qingming ; Shen, Jianbing</creatorcontrib><description>Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations by handling the modality-discrepancy in feature level. However, the modality difference in classifier level has received much less attention, resulting in limited discriminability. In this paper, we propose a novel modality-aware collaborative ensemble (MACE) learning method with middle-level sharable two-stream network (MSTN) for VT-ReID, which handles the modality-discrepancy in both feature level and classifier level. In feature level, MSTN achieves much better performance than existing methods by capturing sharable discriminative middle-level features in convolutional layers. In classifier level, we introduce both modality-specific and modality-sharable identity classifiers for two modalities to handle the modality discrepancy. To utilize the complementary information among different classifiers, we propose an ensemble learning scheme to incorporate the modality sharable classifier and the modality specific classifiers. In addition, we introduce a collaborative learning strategy, which regularizes modality-specific identity predictions and the ensemble outputs. Extensive experiments on two cross-modality datasets demonstrate that the proposed method outperforms current state-of-the-art by a large margin, achieving rank-1/mAP accuracy 51.64%/50.11% on the SYSU-MM01 dataset, and 72.37%/69.09% on the RegDB dataset.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.2998275</identifier><identifier>PMID: 32746238</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cameras ; Classifiers ; Collaboration ; collaborative ensemble learning ; Collaborative work ; Cross-modality ; Datasets ; Ensemble learning ; Face recognition ; Handles ; Learning systems ; person re-identification ; Task analysis ; Visualization</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.9387-9399</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-61b49f4964d9a3bc769614da0bf4d07cff394c65b3360c89674eb8f576a2f3293</citedby><cites>FETCH-LOGICAL-c347t-61b49f4964d9a3bc769614da0bf4d07cff394c65b3360c89674eb8f576a2f3293</cites><orcidid>0000-0003-3989-7655 ; 0000-0003-2656-3082 ; 0000-0002-9395-5863 ; 0000-0001-8564-0346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9107428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9107428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32746238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Mang</creatorcontrib><creatorcontrib>Lan, Xiangyuan</creatorcontrib><creatorcontrib>Leng, Qingming</creatorcontrib><creatorcontrib>Shen, Jianbing</creatorcontrib><title>Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations by handling the modality-discrepancy in feature level. However, the modality difference in classifier level has received much less attention, resulting in limited discriminability. In this paper, we propose a novel modality-aware collaborative ensemble (MACE) learning method with middle-level sharable two-stream network (MSTN) for VT-ReID, which handles the modality-discrepancy in both feature level and classifier level. In feature level, MSTN achieves much better performance than existing methods by capturing sharable discriminative middle-level features in convolutional layers. In classifier level, we introduce both modality-specific and modality-sharable identity classifiers for two modalities to handle the modality discrepancy. To utilize the complementary information among different classifiers, we propose an ensemble learning scheme to incorporate the modality sharable classifier and the modality specific classifiers. In addition, we introduce a collaborative learning strategy, which regularizes modality-specific identity predictions and the ensemble outputs. Extensive experiments on two cross-modality datasets demonstrate that the proposed method outperforms current state-of-the-art by a large margin, achieving rank-1/mAP accuracy 51.64%/50.11% on the SYSU-MM01 dataset, and 72.37%/69.09% on the RegDB dataset.</description><subject>Cameras</subject><subject>Classifiers</subject><subject>Collaboration</subject><subject>collaborative ensemble learning</subject><subject>Collaborative work</subject><subject>Cross-modality</subject><subject>Datasets</subject><subject>Ensemble learning</subject><subject>Face recognition</subject><subject>Handles</subject><subject>Learning systems</subject><subject>person re-identification</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdR_KjeBUECXrykzn5kN3sspWqhoohevIRNMisraVJ300r_vVtae_A0w8wzw8tDyCWFIaWg796mL0MGDIZM65yp7ICcUi1oCiDYYewhU6miQp-QsxC-AKjIqDwmJ5wpIRnPT8nH2HchpE9dbRrXr5MX9KFrk1dMpzW2vbOuMr2Lk5UzyR-Vjn6Mx2TcNY0pOx-BFSaTNuC8bDCZofGtaz_PyZE1TcCLXR2Q9_vJ2_gxnT0_TMejWVpxofpU0lJoK7QUtTa8rJTUkoraQGlFDaqylmtRyazkXEKVa6kElrnNlDTMcqb5gNxu_y58973E0BdzFyqM2VrslqFgggNXWa4gojf_0K9u6duYLlIZpZpKxiIFW6rauPFoi4V3c-PXBYVi472I3ouN92LnPZ5c7x4vyznW-4M_0RG42gIOEfdrTUEJlvNfmVKFrA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ye, Mang</creator><creator>Lan, Xiangyuan</creator><creator>Leng, Qingming</creator><creator>Shen, Jianbing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3989-7655</orcidid><orcidid>https://orcid.org/0000-0003-2656-3082</orcidid><orcidid>https://orcid.org/0000-0002-9395-5863</orcidid><orcidid>https://orcid.org/0000-0001-8564-0346</orcidid></search><sort><creationdate>20200101</creationdate><title>Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning</title><author>Ye, Mang ; Lan, Xiangyuan ; Leng, Qingming ; Shen, Jianbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-61b49f4964d9a3bc769614da0bf4d07cff394c65b3360c89674eb8f576a2f3293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cameras</topic><topic>Classifiers</topic><topic>Collaboration</topic><topic>collaborative ensemble learning</topic><topic>Collaborative work</topic><topic>Cross-modality</topic><topic>Datasets</topic><topic>Ensemble learning</topic><topic>Face recognition</topic><topic>Handles</topic><topic>Learning systems</topic><topic>person re-identification</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Mang</creatorcontrib><creatorcontrib>Lan, Xiangyuan</creatorcontrib><creatorcontrib>Leng, Qingming</creatorcontrib><creatorcontrib>Shen, Jianbing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Mang</au><au>Lan, Xiangyuan</au><au>Leng, Qingming</au><au>Shen, Jianbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>9387</spage><epage>9399</epage><pages>9387-9399</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Visible thermal person re-identification (VT-ReID) is a challenging cross-modality pedestrian retrieval problem due to the large intra-class variations and modality discrepancy across different cameras. Existing VT-ReID methods mainly focus on learning cross-modality sharable feature representations by handling the modality-discrepancy in feature level. However, the modality difference in classifier level has received much less attention, resulting in limited discriminability. In this paper, we propose a novel modality-aware collaborative ensemble (MACE) learning method with middle-level sharable two-stream network (MSTN) for VT-ReID, which handles the modality-discrepancy in both feature level and classifier level. In feature level, MSTN achieves much better performance than existing methods by capturing sharable discriminative middle-level features in convolutional layers. In classifier level, we introduce both modality-specific and modality-sharable identity classifiers for two modalities to handle the modality discrepancy. To utilize the complementary information among different classifiers, we propose an ensemble learning scheme to incorporate the modality sharable classifier and the modality specific classifiers. In addition, we introduce a collaborative learning strategy, which regularizes modality-specific identity predictions and the ensemble outputs. Extensive experiments on two cross-modality datasets demonstrate that the proposed method outperforms current state-of-the-art by a large margin, achieving rank-1/mAP accuracy 51.64%/50.11% on the SYSU-MM01 dataset, and 72.37%/69.09% on the RegDB dataset.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32746238</pmid><doi>10.1109/TIP.2020.2998275</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3989-7655</orcidid><orcidid>https://orcid.org/0000-0003-2656-3082</orcidid><orcidid>https://orcid.org/0000-0002-9395-5863</orcidid><orcidid>https://orcid.org/0000-0001-8564-0346</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2020-01, Vol.29, p.9387-9399
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2020_2998275
source IEEE Electronic Library (IEL)
subjects Cameras
Classifiers
Collaboration
collaborative ensemble learning
Collaborative work
Cross-modality
Datasets
Ensemble learning
Face recognition
Handles
Learning systems
person re-identification
Task analysis
Visualization
title Cross-Modality Person Re-Identification via Modality-Aware Collaborative Ensemble Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Modality%20Person%20Re-Identification%20via%20Modality-Aware%20Collaborative%20Ensemble%20Learning&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ye,%20Mang&rft.date=2020-01-01&rft.volume=29&rft.spage=9387&rft.epage=9399&rft.pages=9387-9399&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.2998275&rft_dat=%3Cproquest_RIE%3E2451191622%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451191622&rft_id=info:pmid/32746238&rft_ieee_id=9107428&rfr_iscdi=true