Two-Dimensional Autofocus Technique Based on Spatial Frequency Domain Fragmentation
Existing two-dimensional (2D) autofocus algorithms, exploiting the known structure of 2D phase error, lack the error estimation accuracy in the case of a low signal-to-noise ratio (SNR) due to the non-exhaustive use of the echo signal. In this paper, we propose a novel 2D autofocus algorithm, thorou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020-01, Vol.29, p.6006-6016 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6016 |
---|---|
container_issue | |
container_start_page | 6006 |
container_title | IEEE transactions on image processing |
container_volume | 29 |
creator | Makarov, Pavel A. |
description | Existing two-dimensional (2D) autofocus algorithms, exploiting the known structure of 2D phase error, lack the error estimation accuracy in the case of a low signal-to-noise ratio (SNR) due to the non-exhaustive use of the echo signal. In this paper, we propose a novel 2D autofocus algorithm, thoroughly utilizing all the available data and therefore achieving superior estimation performance. Via analytical study, we show that the partial derivative of the 2D error with respect to the azimuth frequency is approximable as a function of single argument, after appropriate change of variable. The established property enables a scheme for the azimuth phase error (APE) measurement, where the polar formatted data are fragmented along the range frequency and then aligned along the azimuth frequency, in order to equalize phase gradients in different fragments. On the one hand, such a scheme avoids the necessity to divide the full-aperture signal into subapertures, while on the other hand, it involves the whole signal support. Improved accuracy of the resulting estimate is achieved through the joint inter-fragment estimation of the APE gradient. The proposed algorithm, based on the mentioned scheme, was validated via computer simulations. The conducted experiments confirmed its preference against the existing techniques. The preference is particularly distinct for low SNR imagery. |
doi_str_mv | 10.1109/TIP.2020.2988143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2020_2988143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9075422</ieee_id><sourcerecordid>2396868625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-f2be8df446e2c3e6491ec3741dc7f0d71bb65b1640f57b8f4b6a1e90636442303</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMo7vpxFwQpePHSdZJM0-a4fi8sKLieS5pOtbJt1qZF_Pdm3dWD5JAw88zL5GHshMOEc9CXi9nTRICAidBZxlHusDHXyGMAFLvhDUkapxz1iB14_w7AMeFqn42kkAKTRI7Z8-LTxTd1Q62vXWuW0XToXeXs4KMF2be2_hgoujKeysi10fPK9HWA7joK9dZ-RTeuMXUbCuY1ZPSh7dojtleZpafj7X3IXu5uF9cP8fzxfnY9ncdWYtrHlSgoKytERcJKUqg5WZkiL21aQZnyolBJwRVClaRFVmGhDCcNSipEIUEesotN7qpzYR3f503tLS2XpiU3-FxIjZkGnqmAnv9D393Qhf_-UCoLRySBgg1lO-d9R1W-6urGdF85h3wtPA_C87XwfCs8jJxtg4eiofJv4NdwAE43QE1Ef20NaYJCyG9394Mv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2396868625</pqid></control><display><type>article</type><title>Two-Dimensional Autofocus Technique Based on Spatial Frequency Domain Fragmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Makarov, Pavel A.</creator><creatorcontrib>Makarov, Pavel A.</creatorcontrib><description>Existing two-dimensional (2D) autofocus algorithms, exploiting the known structure of 2D phase error, lack the error estimation accuracy in the case of a low signal-to-noise ratio (SNR) due to the non-exhaustive use of the echo signal. In this paper, we propose a novel 2D autofocus algorithm, thoroughly utilizing all the available data and therefore achieving superior estimation performance. Via analytical study, we show that the partial derivative of the 2D error with respect to the azimuth frequency is approximable as a function of single argument, after appropriate change of variable. The established property enables a scheme for the azimuth phase error (APE) measurement, where the polar formatted data are fragmented along the range frequency and then aligned along the azimuth frequency, in order to equalize phase gradients in different fragments. On the one hand, such a scheme avoids the necessity to divide the full-aperture signal into subapertures, while on the other hand, it involves the whole signal support. Improved accuracy of the resulting estimate is achieved through the joint inter-fragment estimation of the APE gradient. The proposed algorithm, based on the mentioned scheme, was validated via computer simulations. The conducted experiments confirmed its preference against the existing techniques. The preference is particularly distinct for low SNR imagery.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2020.2988143</identifier><identifier>PMID: 32324553</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Apertures ; Azimuth ; azimuth phase error (APE) ; Computer simulation ; Electronics packaging ; Error analysis ; Estimation ; Imagery ; low signal-to-noise ratio (SNR) ; Phase error ; phase gradient autofocus (PGA) ; polar format algorithm (PFA) ; residual range cell migration (RCM) ; Signal to noise ratio ; Synthetic aperture radar ; Synthetic aperture radar (SAR) ; two-dimensional autofocus</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.6006-6016</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-f2be8df446e2c3e6491ec3741dc7f0d71bb65b1640f57b8f4b6a1e90636442303</citedby><cites>FETCH-LOGICAL-c347t-f2be8df446e2c3e6491ec3741dc7f0d71bb65b1640f57b8f4b6a1e90636442303</cites><orcidid>0000-0002-1984-556X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9075422$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9075422$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32324553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makarov, Pavel A.</creatorcontrib><title>Two-Dimensional Autofocus Technique Based on Spatial Frequency Domain Fragmentation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Existing two-dimensional (2D) autofocus algorithms, exploiting the known structure of 2D phase error, lack the error estimation accuracy in the case of a low signal-to-noise ratio (SNR) due to the non-exhaustive use of the echo signal. In this paper, we propose a novel 2D autofocus algorithm, thoroughly utilizing all the available data and therefore achieving superior estimation performance. Via analytical study, we show that the partial derivative of the 2D error with respect to the azimuth frequency is approximable as a function of single argument, after appropriate change of variable. The established property enables a scheme for the azimuth phase error (APE) measurement, where the polar formatted data are fragmented along the range frequency and then aligned along the azimuth frequency, in order to equalize phase gradients in different fragments. On the one hand, such a scheme avoids the necessity to divide the full-aperture signal into subapertures, while on the other hand, it involves the whole signal support. Improved accuracy of the resulting estimate is achieved through the joint inter-fragment estimation of the APE gradient. The proposed algorithm, based on the mentioned scheme, was validated via computer simulations. The conducted experiments confirmed its preference against the existing techniques. The preference is particularly distinct for low SNR imagery.</description><subject>Algorithms</subject><subject>Apertures</subject><subject>Azimuth</subject><subject>azimuth phase error (APE)</subject><subject>Computer simulation</subject><subject>Electronics packaging</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Imagery</subject><subject>low signal-to-noise ratio (SNR)</subject><subject>Phase error</subject><subject>phase gradient autofocus (PGA)</subject><subject>polar format algorithm (PFA)</subject><subject>residual range cell migration (RCM)</subject><subject>Signal to noise ratio</subject><subject>Synthetic aperture radar</subject><subject>Synthetic aperture radar (SAR)</subject><subject>two-dimensional autofocus</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMo7vpxFwQpePHSdZJM0-a4fi8sKLieS5pOtbJt1qZF_Pdm3dWD5JAw88zL5GHshMOEc9CXi9nTRICAidBZxlHusDHXyGMAFLvhDUkapxz1iB14_w7AMeFqn42kkAKTRI7Z8-LTxTd1Q62vXWuW0XToXeXs4KMF2be2_hgoujKeysi10fPK9HWA7joK9dZ-RTeuMXUbCuY1ZPSh7dojtleZpafj7X3IXu5uF9cP8fzxfnY9ncdWYtrHlSgoKytERcJKUqg5WZkiL21aQZnyolBJwRVClaRFVmGhDCcNSipEIUEesotN7qpzYR3f503tLS2XpiU3-FxIjZkGnqmAnv9D393Qhf_-UCoLRySBgg1lO-d9R1W-6urGdF85h3wtPA_C87XwfCs8jJxtg4eiofJv4NdwAE43QE1Ef20NaYJCyG9394Mv</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Makarov, Pavel A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1984-556X</orcidid></search><sort><creationdate>20200101</creationdate><title>Two-Dimensional Autofocus Technique Based on Spatial Frequency Domain Fragmentation</title><author>Makarov, Pavel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-f2be8df446e2c3e6491ec3741dc7f0d71bb65b1640f57b8f4b6a1e90636442303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Apertures</topic><topic>Azimuth</topic><topic>azimuth phase error (APE)</topic><topic>Computer simulation</topic><topic>Electronics packaging</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Imagery</topic><topic>low signal-to-noise ratio (SNR)</topic><topic>Phase error</topic><topic>phase gradient autofocus (PGA)</topic><topic>polar format algorithm (PFA)</topic><topic>residual range cell migration (RCM)</topic><topic>Signal to noise ratio</topic><topic>Synthetic aperture radar</topic><topic>Synthetic aperture radar (SAR)</topic><topic>two-dimensional autofocus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makarov, Pavel A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Makarov, Pavel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Autofocus Technique Based on Spatial Frequency Domain Fragmentation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>6006</spage><epage>6016</epage><pages>6006-6016</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Existing two-dimensional (2D) autofocus algorithms, exploiting the known structure of 2D phase error, lack the error estimation accuracy in the case of a low signal-to-noise ratio (SNR) due to the non-exhaustive use of the echo signal. In this paper, we propose a novel 2D autofocus algorithm, thoroughly utilizing all the available data and therefore achieving superior estimation performance. Via analytical study, we show that the partial derivative of the 2D error with respect to the azimuth frequency is approximable as a function of single argument, after appropriate change of variable. The established property enables a scheme for the azimuth phase error (APE) measurement, where the polar formatted data are fragmented along the range frequency and then aligned along the azimuth frequency, in order to equalize phase gradients in different fragments. On the one hand, such a scheme avoids the necessity to divide the full-aperture signal into subapertures, while on the other hand, it involves the whole signal support. Improved accuracy of the resulting estimate is achieved through the joint inter-fragment estimation of the APE gradient. The proposed algorithm, based on the mentioned scheme, was validated via computer simulations. The conducted experiments confirmed its preference against the existing techniques. The preference is particularly distinct for low SNR imagery.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32324553</pmid><doi>10.1109/TIP.2020.2988143</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1984-556X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2020-01, Vol.29, p.6006-6016 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2020_2988143 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Apertures Azimuth azimuth phase error (APE) Computer simulation Electronics packaging Error analysis Estimation Imagery low signal-to-noise ratio (SNR) Phase error phase gradient autofocus (PGA) polar format algorithm (PFA) residual range cell migration (RCM) Signal to noise ratio Synthetic aperture radar Synthetic aperture radar (SAR) two-dimensional autofocus |
title | Two-Dimensional Autofocus Technique Based on Spatial Frequency Domain Fragmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Autofocus%20Technique%20Based%20on%20Spatial%20Frequency%20Domain%20Fragmentation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Makarov,%20Pavel%20A.&rft.date=2020-01-01&rft.volume=29&rft.spage=6006&rft.epage=6016&rft.pages=6006-6016&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2020.2988143&rft_dat=%3Cproquest_RIE%3E2396868625%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2396868625&rft_id=info:pmid/32324553&rft_ieee_id=9075422&rfr_iscdi=true |