Illumination Estimation and Compensation of Low Frame Rate Video Sequences for Wavelet-Based Video Compression

In this paper, we are interested in the compression of image sets or video with considerable changes in illumination. We develop a framework to decompose frames into illumination fields and texture in order to achieve sparser representations of frames which is beneficial for compression. Illuminatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2019-09, Vol.28 (9), p.4313-4327
Hauptverfasser: Haghighat, Maryam, Mathew, Reji, Naman, Aous, Taubman, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4327
container_issue 9
container_start_page 4313
container_title IEEE transactions on image processing
container_volume 28
creator Haghighat, Maryam
Mathew, Reji
Naman, Aous
Taubman, David
description In this paper, we are interested in the compression of image sets or video with considerable changes in illumination. We develop a framework to decompose frames into illumination fields and texture in order to achieve sparser representations of frames which is beneficial for compression. Illumination variations or contrast ratio factors among frames are described by a full resolution multiplicative field. First, we propose a Lifting-based Illumination Adaptive Transform (LIAT) framework which incorporates illumination compensation to temporal wavelet transforms. We estimate a full resolution illumination field, taking heed of its spatial sparsity by a rate-distortion (R-D) driven framework. An affine mesh model is also developed as a point of comparison. We find the operational coding cost of the subband frames by modeling a typical t + 2D wavelet video coding system. While our general findings on R-D optimization are applicable to a range of coding frameworks, in this paper, we report results based on employing JPEG 2000 coding tools. The experimental results highlight the benefits of the proposed R-D driven illumination estimation and compensation in comparison with alternative scalable coding methods and non-scalable coding schemes of AVC and HEVC employing weighted prediction.
doi_str_mv 10.1109/TIP.2019.2905756
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2019_2905756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672176</ieee_id><sourcerecordid>2250750144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c0e2295b73c313d89df77744defc32d940b145981912bbd954fa4cce798e20b63</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaL56LxSKoJdcvJVk2fIcmyWbLCwkNJv0KGRpDA62tZXshvz30eJNDjlpmPnNY_QeId84W3DO4Nd2fbcQjMNCACtUUX4iJxwkzxiT4nOqUzNTXMIxOY3xiTEuC15-Icc5A1YJrk7IsO66qW8HM7Z-oFdxbPu5NIOjS9_vcIhzwzd045_pKpge6R8zIn1sHXp6j_8mHCxG2vhA_5r_2OGYXZqI7kDsZQLGmFTOyVFjuohfD-8ZeVhdbZc32eb2er38vclsXsGYWYZCQFGr3OY8dxW4RiklpcPG5sKBZHX6ClQcuKhrB4VsjLQWFVQoWF3mZ-Ri1t0Fn86Lo-7baLHrzIB-ilpwUBVAJYuE_vyAPvkpDOk6LUTBVJFck4liM2WDjzFgo3chWRVeNGd6n4VOWeh9FvqQRVr5cRCe6h7d-8Kb-Qn4PgMtIr6Pq1KlYZm_Ags9jQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250750144</pqid></control><display><type>article</type><title>Illumination Estimation and Compensation of Low Frame Rate Video Sequences for Wavelet-Based Video Compression</title><source>IEEE Electronic Library (IEL)</source><creator>Haghighat, Maryam ; Mathew, Reji ; Naman, Aous ; Taubman, David</creator><creatorcontrib>Haghighat, Maryam ; Mathew, Reji ; Naman, Aous ; Taubman, David</creatorcontrib><description>In this paper, we are interested in the compression of image sets or video with considerable changes in illumination. We develop a framework to decompose frames into illumination fields and texture in order to achieve sparser representations of frames which is beneficial for compression. Illumination variations or contrast ratio factors among frames are described by a full resolution multiplicative field. First, we propose a Lifting-based Illumination Adaptive Transform (LIAT) framework which incorporates illumination compensation to temporal wavelet transforms. We estimate a full resolution illumination field, taking heed of its spatial sparsity by a rate-distortion (R-D) driven framework. An affine mesh model is also developed as a point of comparison. We find the operational coding cost of the subband frames by modeling a typical t + 2D wavelet video coding system. While our general findings on R-D optimization are applicable to a range of coding frameworks, in this paper, we report results based on employing JPEG 2000 coding tools. The experimental results highlight the benefits of the proposed R-D driven illumination estimation and compensation in comparison with alternative scalable coding methods and non-scalable coding schemes of AVC and HEVC employing weighted prediction.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2905756</identifier><identifier>PMID: 30908217</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Coding ; Compensation ; Finite element method ; Frames ; Illumination ; Illumination estimation ; Image coding ; Image compression ; JPEG encoders-decoders ; Lighting ; Optimization ; R-D optimization ; Scalable video coding ; Two dimensional models ; Video coding ; Video compression ; Wavelet transforms ; Wavelet-based compression</subject><ispartof>IEEE transactions on image processing, 2019-09, Vol.28 (9), p.4313-4327</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-c0e2295b73c313d89df77744defc32d940b145981912bbd954fa4cce798e20b63</citedby><cites>FETCH-LOGICAL-c389t-c0e2295b73c313d89df77744defc32d940b145981912bbd954fa4cce798e20b63</cites><orcidid>0000-0002-5774-7143 ; 0000-0002-2080-8483 ; 0000-0002-8458-6402 ; 0000-0003-2940-7325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672176$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8672176$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30908217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haghighat, Maryam</creatorcontrib><creatorcontrib>Mathew, Reji</creatorcontrib><creatorcontrib>Naman, Aous</creatorcontrib><creatorcontrib>Taubman, David</creatorcontrib><title>Illumination Estimation and Compensation of Low Frame Rate Video Sequences for Wavelet-Based Video Compression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we are interested in the compression of image sets or video with considerable changes in illumination. We develop a framework to decompose frames into illumination fields and texture in order to achieve sparser representations of frames which is beneficial for compression. Illumination variations or contrast ratio factors among frames are described by a full resolution multiplicative field. First, we propose a Lifting-based Illumination Adaptive Transform (LIAT) framework which incorporates illumination compensation to temporal wavelet transforms. We estimate a full resolution illumination field, taking heed of its spatial sparsity by a rate-distortion (R-D) driven framework. An affine mesh model is also developed as a point of comparison. We find the operational coding cost of the subband frames by modeling a typical t + 2D wavelet video coding system. While our general findings on R-D optimization are applicable to a range of coding frameworks, in this paper, we report results based on employing JPEG 2000 coding tools. The experimental results highlight the benefits of the proposed R-D driven illumination estimation and compensation in comparison with alternative scalable coding methods and non-scalable coding schemes of AVC and HEVC employing weighted prediction.</description><subject>Adaptation models</subject><subject>Coding</subject><subject>Compensation</subject><subject>Finite element method</subject><subject>Frames</subject><subject>Illumination</subject><subject>Illumination estimation</subject><subject>Image coding</subject><subject>Image compression</subject><subject>JPEG encoders-decoders</subject><subject>Lighting</subject><subject>Optimization</subject><subject>R-D optimization</subject><subject>Scalable video coding</subject><subject>Two dimensional models</subject><subject>Video coding</subject><subject>Video compression</subject><subject>Wavelet transforms</subject><subject>Wavelet-based compression</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1r3DAQxUVpaL56LxSKoJdcvJVk2fIcmyWbLCwkNJv0KGRpDA62tZXshvz30eJNDjlpmPnNY_QeId84W3DO4Nd2fbcQjMNCACtUUX4iJxwkzxiT4nOqUzNTXMIxOY3xiTEuC15-Icc5A1YJrk7IsO66qW8HM7Z-oFdxbPu5NIOjS9_vcIhzwzd045_pKpge6R8zIn1sHXp6j_8mHCxG2vhA_5r_2OGYXZqI7kDsZQLGmFTOyVFjuohfD-8ZeVhdbZc32eb2er38vclsXsGYWYZCQFGr3OY8dxW4RiklpcPG5sKBZHX6ClQcuKhrB4VsjLQWFVQoWF3mZ-Ri1t0Fn86Lo-7baLHrzIB-ilpwUBVAJYuE_vyAPvkpDOk6LUTBVJFck4liM2WDjzFgo3chWRVeNGd6n4VOWeh9FvqQRVr5cRCe6h7d-8Kb-Qn4PgMtIr6Pq1KlYZm_Ags9jQA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Haghighat, Maryam</creator><creator>Mathew, Reji</creator><creator>Naman, Aous</creator><creator>Taubman, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5774-7143</orcidid><orcidid>https://orcid.org/0000-0002-2080-8483</orcidid><orcidid>https://orcid.org/0000-0002-8458-6402</orcidid><orcidid>https://orcid.org/0000-0003-2940-7325</orcidid></search><sort><creationdate>20190901</creationdate><title>Illumination Estimation and Compensation of Low Frame Rate Video Sequences for Wavelet-Based Video Compression</title><author>Haghighat, Maryam ; Mathew, Reji ; Naman, Aous ; Taubman, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c0e2295b73c313d89df77744defc32d940b145981912bbd954fa4cce798e20b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Coding</topic><topic>Compensation</topic><topic>Finite element method</topic><topic>Frames</topic><topic>Illumination</topic><topic>Illumination estimation</topic><topic>Image coding</topic><topic>Image compression</topic><topic>JPEG encoders-decoders</topic><topic>Lighting</topic><topic>Optimization</topic><topic>R-D optimization</topic><topic>Scalable video coding</topic><topic>Two dimensional models</topic><topic>Video coding</topic><topic>Video compression</topic><topic>Wavelet transforms</topic><topic>Wavelet-based compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haghighat, Maryam</creatorcontrib><creatorcontrib>Mathew, Reji</creatorcontrib><creatorcontrib>Naman, Aous</creatorcontrib><creatorcontrib>Taubman, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haghighat, Maryam</au><au>Mathew, Reji</au><au>Naman, Aous</au><au>Taubman, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illumination Estimation and Compensation of Low Frame Rate Video Sequences for Wavelet-Based Video Compression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>28</volume><issue>9</issue><spage>4313</spage><epage>4327</epage><pages>4313-4327</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we are interested in the compression of image sets or video with considerable changes in illumination. We develop a framework to decompose frames into illumination fields and texture in order to achieve sparser representations of frames which is beneficial for compression. Illumination variations or contrast ratio factors among frames are described by a full resolution multiplicative field. First, we propose a Lifting-based Illumination Adaptive Transform (LIAT) framework which incorporates illumination compensation to temporal wavelet transforms. We estimate a full resolution illumination field, taking heed of its spatial sparsity by a rate-distortion (R-D) driven framework. An affine mesh model is also developed as a point of comparison. We find the operational coding cost of the subband frames by modeling a typical t + 2D wavelet video coding system. While our general findings on R-D optimization are applicable to a range of coding frameworks, in this paper, we report results based on employing JPEG 2000 coding tools. The experimental results highlight the benefits of the proposed R-D driven illumination estimation and compensation in comparison with alternative scalable coding methods and non-scalable coding schemes of AVC and HEVC employing weighted prediction.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30908217</pmid><doi>10.1109/TIP.2019.2905756</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5774-7143</orcidid><orcidid>https://orcid.org/0000-0002-2080-8483</orcidid><orcidid>https://orcid.org/0000-0002-8458-6402</orcidid><orcidid>https://orcid.org/0000-0003-2940-7325</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-09, Vol.28 (9), p.4313-4327
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2019_2905756
source IEEE Electronic Library (IEL)
subjects Adaptation models
Coding
Compensation
Finite element method
Frames
Illumination
Illumination estimation
Image coding
Image compression
JPEG encoders-decoders
Lighting
Optimization
R-D optimization
Scalable video coding
Two dimensional models
Video coding
Video compression
Wavelet transforms
Wavelet-based compression
title Illumination Estimation and Compensation of Low Frame Rate Video Sequences for Wavelet-Based Video Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illumination%20Estimation%20and%20Compensation%20of%20Low%20Frame%20Rate%20Video%20Sequences%20for%20Wavelet-Based%20Video%20Compression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Haghighat,%20Maryam&rft.date=2019-09-01&rft.volume=28&rft.issue=9&rft.spage=4313&rft.epage=4327&rft.pages=4313-4327&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2905756&rft_dat=%3Cproquest_RIE%3E2250750144%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250750144&rft_id=info:pmid/30908217&rft_ieee_id=8672176&rfr_iscdi=true