AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior
The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2019-01, Vol.28 (1), p.381-393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | 1 |
container_start_page | 381 |
container_title | IEEE transactions on image processing |
container_volume | 28 |
creator | Wang, Anna Wang, Wenhui Liu, Jinglu Gu, Nanhui |
description | The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy image-to-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects. |
doi_str_mv | 10.1109/TIP.2018.2868567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2018_2868567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8454467</ieee_id><sourcerecordid>2101277190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-28463bf68ec410ffd686990c186f129316657a1db87acb7f95e3d5e3fc8b27303</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoTqd3QZCCFy-deWmapN7G_FUYWnDisbRdsmX0x0zag_71pnbu4OHxHi-f7yN8ELoAPAHA0e0iTiYEg5gQwUTI-AE6gYiCjzElh27GIfc50GiETq3dYAw0BHaMRoHLCEHgBCXTOHmR7Z0XV9lK-m3j_w7em65XpRy23r1cZ99u4X3odu1N26qx27U0uvDisuwqXWetbmovMboxZ-hIZaWV57s-Ru-PD4vZsz9_fYpn07lfBJS3PhGUBbliQhYUsFJLJlgU4QIEU0CiABgLeQbLXPCsyLmKQhksXalC5IQHOBijm-Hu1jSfnbRtWmlbyLLMatl0NiWAgXAOUY9e_0M3TWdq9ztHAQcehqyn8EAVprHWSJVuja4y85UCTnvbqbOd9rbTnW0Xudod7vJKLveBP70OuBwALaXcPwsaUuriP7jngMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117175560</pqid></control><display><type>article</type><title>AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Anna ; Wang, Wenhui ; Liu, Jinglu ; Gu, Nanhui</creator><creatorcontrib>Wang, Anna ; Wang, Wenhui ; Liu, Jinglu ; Gu, Nanhui</creatorcontrib><description>The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy image-to-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2868567</identifier><identifier>PMID: 30188821</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Atmospheric modeling ; Atmospheric scattering ; Dehazing ; Haze ; Ill posed problems ; Illumination ; Image color analysis ; Image restoration ; Lighting ; Luminance ; Meteorology ; multiscale CNN ; Scattering ; Visibility ; Wiener filters</subject><ispartof>IEEE transactions on image processing, 2019-01, Vol.28 (1), p.381-393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-28463bf68ec410ffd686990c186f129316657a1db87acb7f95e3d5e3fc8b27303</citedby><cites>FETCH-LOGICAL-c347t-28463bf68ec410ffd686990c186f129316657a1db87acb7f95e3d5e3fc8b27303</cites><orcidid>0000-0002-3434-5002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8454467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8454467$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30188821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Anna</creatorcontrib><creatorcontrib>Wang, Wenhui</creatorcontrib><creatorcontrib>Liu, Jinglu</creatorcontrib><creatorcontrib>Gu, Nanhui</creatorcontrib><title>AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy image-to-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects.</description><subject>Artificial neural networks</subject><subject>Atmospheric modeling</subject><subject>Atmospheric scattering</subject><subject>Dehazing</subject><subject>Haze</subject><subject>Ill posed problems</subject><subject>Illumination</subject><subject>Image color analysis</subject><subject>Image restoration</subject><subject>Lighting</subject><subject>Luminance</subject><subject>Meteorology</subject><subject>multiscale CNN</subject><subject>Scattering</subject><subject>Visibility</subject><subject>Wiener filters</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4MoTqd3QZCCFy-deWmapN7G_FUYWnDisbRdsmX0x0zag_71pnbu4OHxHi-f7yN8ELoAPAHA0e0iTiYEg5gQwUTI-AE6gYiCjzElh27GIfc50GiETq3dYAw0BHaMRoHLCEHgBCXTOHmR7Z0XV9lK-m3j_w7em65XpRy23r1cZ99u4X3odu1N26qx27U0uvDisuwqXWetbmovMboxZ-hIZaWV57s-Ru-PD4vZsz9_fYpn07lfBJS3PhGUBbliQhYUsFJLJlgU4QIEU0CiABgLeQbLXPCsyLmKQhksXalC5IQHOBijm-Hu1jSfnbRtWmlbyLLMatl0NiWAgXAOUY9e_0M3TWdq9ztHAQcehqyn8EAVprHWSJVuja4y85UCTnvbqbOd9rbTnW0Xudod7vJKLveBP70OuBwALaXcPwsaUuriP7jngMw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, Anna</creator><creator>Wang, Wenhui</creator><creator>Liu, Jinglu</creator><creator>Gu, Nanhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3434-5002</orcidid></search><sort><creationdate>20190101</creationdate><title>AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior</title><author>Wang, Anna ; Wang, Wenhui ; Liu, Jinglu ; Gu, Nanhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-28463bf68ec410ffd686990c186f129316657a1db87acb7f95e3d5e3fc8b27303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Atmospheric modeling</topic><topic>Atmospheric scattering</topic><topic>Dehazing</topic><topic>Haze</topic><topic>Ill posed problems</topic><topic>Illumination</topic><topic>Image color analysis</topic><topic>Image restoration</topic><topic>Lighting</topic><topic>Luminance</topic><topic>Meteorology</topic><topic>multiscale CNN</topic><topic>Scattering</topic><topic>Visibility</topic><topic>Wiener filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Anna</creatorcontrib><creatorcontrib>Wang, Wenhui</creatorcontrib><creatorcontrib>Liu, Jinglu</creatorcontrib><creatorcontrib>Gu, Nanhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Anna</au><au>Wang, Wenhui</au><au>Liu, Jinglu</au><au>Gu, Nanhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>381</spage><epage>393</epage><pages>381-393</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy image-to-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30188821</pmid><doi>10.1109/TIP.2018.2868567</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3434-5002</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2019-01, Vol.28 (1), p.381-393 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2018_2868567 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Atmospheric modeling Atmospheric scattering Dehazing Haze Ill posed problems Illumination Image color analysis Image restoration Lighting Luminance Meteorology multiscale CNN Scattering Visibility Wiener filters |
title | AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AIPNet:%20Image-to-Image%20Single%20Image%20Dehazing%20With%20Atmospheric%20Illumination%20Prior&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Anna&rft.date=2019-01-01&rft.volume=28&rft.issue=1&rft.spage=381&rft.epage=393&rft.pages=381-393&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2868567&rft_dat=%3Cproquest_RIE%3E2101277190%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117175560&rft_id=info:pmid/30188821&rft_ieee_id=8454467&rfr_iscdi=true |