AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior

The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2019-01, Vol.28 (1), p.381-393
Hauptverfasser: Wang, Anna, Wang, Wenhui, Liu, Jinglu, Gu, Nanhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 1
container_start_page 381
container_title IEEE transactions on image processing
container_volume 28
creator Wang, Anna
Wang, Wenhui
Liu, Jinglu
Gu, Nanhui
description The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy image-to-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects.
doi_str_mv 10.1109/TIP.2018.2868567
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2018_2868567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8454467</ieee_id><sourcerecordid>2101277190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-28463bf68ec410ffd686990c186f129316657a1db87acb7f95e3d5e3fc8b27303</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4MoTqd3QZCCFy-deWmapN7G_FUYWnDisbRdsmX0x0zag_71pnbu4OHxHi-f7yN8ELoAPAHA0e0iTiYEg5gQwUTI-AE6gYiCjzElh27GIfc50GiETq3dYAw0BHaMRoHLCEHgBCXTOHmR7Z0XV9lK-m3j_w7em65XpRy23r1cZ99u4X3odu1N26qx27U0uvDisuwqXWetbmovMboxZ-hIZaWV57s-Ru-PD4vZsz9_fYpn07lfBJS3PhGUBbliQhYUsFJLJlgU4QIEU0CiABgLeQbLXPCsyLmKQhksXalC5IQHOBijm-Hu1jSfnbRtWmlbyLLMatl0NiWAgXAOUY9e_0M3TWdq9ztHAQcehqyn8EAVprHWSJVuja4y85UCTnvbqbOd9rbTnW0Xudod7vJKLveBP70OuBwALaXcPwsaUuriP7jngMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117175560</pqid></control><display><type>article</type><title>AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Anna ; Wang, Wenhui ; Liu, Jinglu ; Gu, Nanhui</creator><creatorcontrib>Wang, Anna ; Wang, Wenhui ; Liu, Jinglu ; Gu, Nanhui</creatorcontrib><description>The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy image-to-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2868567</identifier><identifier>PMID: 30188821</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Atmospheric modeling ; Atmospheric scattering ; Dehazing ; Haze ; Ill posed problems ; Illumination ; Image color analysis ; Image restoration ; Lighting ; Luminance ; Meteorology ; multiscale CNN ; Scattering ; Visibility ; Wiener filters</subject><ispartof>IEEE transactions on image processing, 2019-01, Vol.28 (1), p.381-393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-28463bf68ec410ffd686990c186f129316657a1db87acb7f95e3d5e3fc8b27303</citedby><cites>FETCH-LOGICAL-c347t-28463bf68ec410ffd686990c186f129316657a1db87acb7f95e3d5e3fc8b27303</cites><orcidid>0000-0002-3434-5002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8454467$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8454467$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30188821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Anna</creatorcontrib><creatorcontrib>Wang, Wenhui</creatorcontrib><creatorcontrib>Liu, Jinglu</creatorcontrib><creatorcontrib>Gu, Nanhui</creatorcontrib><title>AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy image-to-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects.</description><subject>Artificial neural networks</subject><subject>Atmospheric modeling</subject><subject>Atmospheric scattering</subject><subject>Dehazing</subject><subject>Haze</subject><subject>Ill posed problems</subject><subject>Illumination</subject><subject>Image color analysis</subject><subject>Image restoration</subject><subject>Lighting</subject><subject>Luminance</subject><subject>Meteorology</subject><subject>multiscale CNN</subject><subject>Scattering</subject><subject>Visibility</subject><subject>Wiener filters</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUx4MoTqd3QZCCFy-deWmapN7G_FUYWnDisbRdsmX0x0zag_71pnbu4OHxHi-f7yN8ELoAPAHA0e0iTiYEg5gQwUTI-AE6gYiCjzElh27GIfc50GiETq3dYAw0BHaMRoHLCEHgBCXTOHmR7Z0XV9lK-m3j_w7em65XpRy23r1cZ99u4X3odu1N26qx27U0uvDisuwqXWetbmovMboxZ-hIZaWV57s-Ru-PD4vZsz9_fYpn07lfBJS3PhGUBbliQhYUsFJLJlgU4QIEU0CiABgLeQbLXPCsyLmKQhksXalC5IQHOBijm-Hu1jSfnbRtWmlbyLLMatl0NiWAgXAOUY9e_0M3TWdq9ztHAQcehqyn8EAVprHWSJVuja4y85UCTnvbqbOd9rbTnW0Xudod7vJKLveBP70OuBwALaXcPwsaUuriP7jngMw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, Anna</creator><creator>Wang, Wenhui</creator><creator>Liu, Jinglu</creator><creator>Gu, Nanhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3434-5002</orcidid></search><sort><creationdate>20190101</creationdate><title>AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior</title><author>Wang, Anna ; Wang, Wenhui ; Liu, Jinglu ; Gu, Nanhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-28463bf68ec410ffd686990c186f129316657a1db87acb7f95e3d5e3fc8b27303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Atmospheric modeling</topic><topic>Atmospheric scattering</topic><topic>Dehazing</topic><topic>Haze</topic><topic>Ill posed problems</topic><topic>Illumination</topic><topic>Image color analysis</topic><topic>Image restoration</topic><topic>Lighting</topic><topic>Luminance</topic><topic>Meteorology</topic><topic>multiscale CNN</topic><topic>Scattering</topic><topic>Visibility</topic><topic>Wiener filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Anna</creatorcontrib><creatorcontrib>Wang, Wenhui</creatorcontrib><creatorcontrib>Liu, Jinglu</creatorcontrib><creatorcontrib>Gu, Nanhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Anna</au><au>Wang, Wenhui</au><au>Liu, Jinglu</au><au>Gu, Nanhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>381</spage><epage>393</epage><pages>381-393</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The atmospheric scattering and absorption gives rise to the natural phenomenon of haze, which severely affects the visibility of scenery. Thus, the image taken by the camera can easily lead to over brightness and ambiguity. To resolve an ill-posed and intractable problem of single image dehazing, we propose a straightforward but remarkable prior-atmospheric illumination prior in this paper. The extensive statistical experiments for different colorspaces and theoretical analyses indicate that the atmospheric illumination in hazy weather mainly has a great influence on the luminance channel in YCrCb colorspace, and has less impact on the chrominance channels. According to this prior, we try to maintain the intrinsic color of hazy scene and enhance its visual contrast. To this end, we apply the multiscale convolutional networks that can automatically identify hazy regions and restore deficient texture information. Compared with previous methods, the deep CNNs not only achieve an end-to-end trainable model, but also accomplish an easy image-to-image system architecture. The extensive comparisons and analyses with existing approaches demonstrate that the proposed approach achieves the state-of-the-art performance on several dehazing effects.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30188821</pmid><doi>10.1109/TIP.2018.2868567</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3434-5002</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-01, Vol.28 (1), p.381-393
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2018_2868567
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Atmospheric modeling
Atmospheric scattering
Dehazing
Haze
Ill posed problems
Illumination
Image color analysis
Image restoration
Lighting
Luminance
Meteorology
multiscale CNN
Scattering
Visibility
Wiener filters
title AIPNet: Image-to-Image Single Image Dehazing With Atmospheric Illumination Prior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AIPNet:%20Image-to-Image%20Single%20Image%20Dehazing%20With%20Atmospheric%20Illumination%20Prior&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Anna&rft.date=2019-01-01&rft.volume=28&rft.issue=1&rft.spage=381&rft.epage=393&rft.pages=381-393&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2868567&rft_dat=%3Cproquest_RIE%3E2101277190%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117175560&rft_id=info:pmid/30188821&rft_ieee_id=8454467&rfr_iscdi=true