Joint Hypergraph Learning for Tag-Based Image Retrieval

As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2018-09, Vol.27 (9), p.4437-4451
Hauptverfasser: Wang, Yaxiong, Zhu, Li, Qian, Xueming, Han, Junwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4451
container_issue 9
container_start_page 4437
container_title IEEE transactions on image processing
container_volume 27
creator Wang, Yaxiong
Zhu, Li
Qian, Xueming
Han, Junwei
description As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated. However, most existing methods use these visual features separately or sequentially. In this paper, we propose a global and local visual features fusion approach to learn the relevance of images by hypergraph approach. A hypergraph is constructed first by utilizing global, local visual features, and tag information. Then, we propose a pseudo-relevance feedback mechanism to obtain the pseudo-positive images. Finally, with the hypergraph and pseudo relevance feedback, we adopt the hypergraph learning algorithm to calculate the relevance score of each image to the query. Experimental results demonstrate the effectiveness of the proposed approach.
doi_str_mv 10.1109/TIP.2018.2837219
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2018_2837219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8360131</ieee_id><sourcerecordid>2055619328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5e700a08835fd8a8a74b71bba15b705f89c61c67a0cb0589d2db867658495e4b3</originalsourceid><addsrcrecordid>eNo9kM9Lw0AQhRdRbK3eBUFy9JI6k81md49a1FYKitRz2E0mMZIfdTcV-t-b0trTPJjvvcPH2DXCFBH0_WrxPo0A1TRSXEaoT9gYdYwhQBydDhmEDCXGesQuvP8GwFhgcs5GkVZaKgljJl-7qu2D-XZNrnRm_RUsybi2asug6FywMmX4aDzlwaIxJQUf1LuKfk19yc4KU3u6OtwJ-3x-Ws3m4fLtZTF7WIYZR92HgiSAAaW4KHJllJGxlWitQWEliELpLMEskQYyC0LpPMqtSmQiVKwFxZZP2N1-d-26nw35Pm0qn1Fdm5a6jU8jECJBzQcBEwZ7NHOd946KdO2qxrhtipDudKWDrnSnKz3oGiq3h_WNbSg_Fv79DMDNHqiI6PhWPAHkyP8AwHxsTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055619328</pqid></control><display><type>article</type><title>Joint Hypergraph Learning for Tag-Based Image Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yaxiong ; Zhu, Li ; Qian, Xueming ; Han, Junwei</creator><creatorcontrib>Wang, Yaxiong ; Zhu, Li ; Qian, Xueming ; Han, Junwei</creatorcontrib><description>As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated. However, most existing methods use these visual features separately or sequentially. In this paper, we propose a global and local visual features fusion approach to learn the relevance of images by hypergraph approach. A hypergraph is constructed first by utilizing global, local visual features, and tag information. Then, we propose a pseudo-relevance feedback mechanism to obtain the pseudo-positive images. Finally, with the hypergraph and pseudo relevance feedback, we adopt the hypergraph learning algorithm to calculate the relevance score of each image to the query. Experimental results demonstrate the effectiveness of the proposed approach.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2837219</identifier><identifier>PMID: 29897870</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>feature fusion ; hypergraph ; Image edge detection ; Image retrieval ; pseudo relevance feedback ; Semantics ; Social network services ; Tag-based image retrieval ; Task analysis ; visual feature ; Visualization</subject><ispartof>IEEE transactions on image processing, 2018-09, Vol.27 (9), p.4437-4451</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5e700a08835fd8a8a74b71bba15b705f89c61c67a0cb0589d2db867658495e4b3</citedby><cites>FETCH-LOGICAL-c319t-5e700a08835fd8a8a74b71bba15b705f89c61c67a0cb0589d2db867658495e4b3</cites><orcidid>0000-0001-5545-7217 ; 0000-0002-3173-6307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8360131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8360131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29897870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yaxiong</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Qian, Xueming</creatorcontrib><creatorcontrib>Han, Junwei</creatorcontrib><title>Joint Hypergraph Learning for Tag-Based Image Retrieval</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated. However, most existing methods use these visual features separately or sequentially. In this paper, we propose a global and local visual features fusion approach to learn the relevance of images by hypergraph approach. A hypergraph is constructed first by utilizing global, local visual features, and tag information. Then, we propose a pseudo-relevance feedback mechanism to obtain the pseudo-positive images. Finally, with the hypergraph and pseudo relevance feedback, we adopt the hypergraph learning algorithm to calculate the relevance score of each image to the query. Experimental results demonstrate the effectiveness of the proposed approach.</description><subject>feature fusion</subject><subject>hypergraph</subject><subject>Image edge detection</subject><subject>Image retrieval</subject><subject>pseudo relevance feedback</subject><subject>Semantics</subject><subject>Social network services</subject><subject>Tag-based image retrieval</subject><subject>Task analysis</subject><subject>visual feature</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9Lw0AQhRdRbK3eBUFy9JI6k81md49a1FYKitRz2E0mMZIfdTcV-t-b0trTPJjvvcPH2DXCFBH0_WrxPo0A1TRSXEaoT9gYdYwhQBydDhmEDCXGesQuvP8GwFhgcs5GkVZaKgljJl-7qu2D-XZNrnRm_RUsybi2asug6FywMmX4aDzlwaIxJQUf1LuKfk19yc4KU3u6OtwJ-3x-Ws3m4fLtZTF7WIYZR92HgiSAAaW4KHJllJGxlWitQWEliELpLMEskQYyC0LpPMqtSmQiVKwFxZZP2N1-d-26nw35Pm0qn1Fdm5a6jU8jECJBzQcBEwZ7NHOd946KdO2qxrhtipDudKWDrnSnKz3oGiq3h_WNbSg_Fv79DMDNHqiI6PhWPAHkyP8AwHxsTA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Wang, Yaxiong</creator><creator>Zhu, Li</creator><creator>Qian, Xueming</creator><creator>Han, Junwei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5545-7217</orcidid><orcidid>https://orcid.org/0000-0002-3173-6307</orcidid></search><sort><creationdate>201809</creationdate><title>Joint Hypergraph Learning for Tag-Based Image Retrieval</title><author>Wang, Yaxiong ; Zhu, Li ; Qian, Xueming ; Han, Junwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5e700a08835fd8a8a74b71bba15b705f89c61c67a0cb0589d2db867658495e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>feature fusion</topic><topic>hypergraph</topic><topic>Image edge detection</topic><topic>Image retrieval</topic><topic>pseudo relevance feedback</topic><topic>Semantics</topic><topic>Social network services</topic><topic>Tag-based image retrieval</topic><topic>Task analysis</topic><topic>visual feature</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yaxiong</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Qian, Xueming</creatorcontrib><creatorcontrib>Han, Junwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yaxiong</au><au>Zhu, Li</au><au>Qian, Xueming</au><au>Han, Junwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Hypergraph Learning for Tag-Based Image Retrieval</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-09</date><risdate>2018</risdate><volume>27</volume><issue>9</issue><spage>4437</spage><epage>4451</epage><pages>4437-4451</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated. However, most existing methods use these visual features separately or sequentially. In this paper, we propose a global and local visual features fusion approach to learn the relevance of images by hypergraph approach. A hypergraph is constructed first by utilizing global, local visual features, and tag information. Then, we propose a pseudo-relevance feedback mechanism to obtain the pseudo-positive images. Finally, with the hypergraph and pseudo relevance feedback, we adopt the hypergraph learning algorithm to calculate the relevance score of each image to the query. Experimental results demonstrate the effectiveness of the proposed approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29897870</pmid><doi>10.1109/TIP.2018.2837219</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5545-7217</orcidid><orcidid>https://orcid.org/0000-0002-3173-6307</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2018-09, Vol.27 (9), p.4437-4451
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2018_2837219
source IEEE Electronic Library (IEL)
subjects feature fusion
hypergraph
Image edge detection
Image retrieval
pseudo relevance feedback
Semantics
Social network services
Tag-based image retrieval
Task analysis
visual feature
Visualization
title Joint Hypergraph Learning for Tag-Based Image Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Hypergraph%20Learning%20for%20Tag-Based%20Image%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Yaxiong&rft.date=2018-09&rft.volume=27&rft.issue=9&rft.spage=4437&rft.epage=4451&rft.pages=4437-4451&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2837219&rft_dat=%3Cproquest_RIE%3E2055619328%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055619328&rft_id=info:pmid/29897870&rft_ieee_id=8360131&rfr_iscdi=true