Joint Hypergraph Learning for Tag-Based Image Retrieval
As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2018-09, Vol.27 (9), p.4437-4451 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4451 |
---|---|
container_issue | 9 |
container_start_page | 4437 |
container_title | IEEE transactions on image processing |
container_volume | 27 |
creator | Wang, Yaxiong Zhu, Li Qian, Xueming Han, Junwei |
description | As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated. However, most existing methods use these visual features separately or sequentially. In this paper, we propose a global and local visual features fusion approach to learn the relevance of images by hypergraph approach. A hypergraph is constructed first by utilizing global, local visual features, and tag information. Then, we propose a pseudo-relevance feedback mechanism to obtain the pseudo-positive images. Finally, with the hypergraph and pseudo relevance feedback, we adopt the hypergraph learning algorithm to calculate the relevance score of each image to the query. Experimental results demonstrate the effectiveness of the proposed approach. |
doi_str_mv | 10.1109/TIP.2018.2837219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2018_2837219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8360131</ieee_id><sourcerecordid>2055619328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5e700a08835fd8a8a74b71bba15b705f89c61c67a0cb0589d2db867658495e4b3</originalsourceid><addsrcrecordid>eNo9kM9Lw0AQhRdRbK3eBUFy9JI6k81md49a1FYKitRz2E0mMZIfdTcV-t-b0trTPJjvvcPH2DXCFBH0_WrxPo0A1TRSXEaoT9gYdYwhQBydDhmEDCXGesQuvP8GwFhgcs5GkVZaKgljJl-7qu2D-XZNrnRm_RUsybi2asug6FywMmX4aDzlwaIxJQUf1LuKfk19yc4KU3u6OtwJ-3x-Ws3m4fLtZTF7WIYZR92HgiSAAaW4KHJllJGxlWitQWEliELpLMEskQYyC0LpPMqtSmQiVKwFxZZP2N1-d-26nw35Pm0qn1Fdm5a6jU8jECJBzQcBEwZ7NHOd946KdO2qxrhtipDudKWDrnSnKz3oGiq3h_WNbSg_Fv79DMDNHqiI6PhWPAHkyP8AwHxsTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055619328</pqid></control><display><type>article</type><title>Joint Hypergraph Learning for Tag-Based Image Retrieval</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yaxiong ; Zhu, Li ; Qian, Xueming ; Han, Junwei</creator><creatorcontrib>Wang, Yaxiong ; Zhu, Li ; Qian, Xueming ; Han, Junwei</creatorcontrib><description>As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated. However, most existing methods use these visual features separately or sequentially. In this paper, we propose a global and local visual features fusion approach to learn the relevance of images by hypergraph approach. A hypergraph is constructed first by utilizing global, local visual features, and tag information. Then, we propose a pseudo-relevance feedback mechanism to obtain the pseudo-positive images. Finally, with the hypergraph and pseudo relevance feedback, we adopt the hypergraph learning algorithm to calculate the relevance score of each image to the query. Experimental results demonstrate the effectiveness of the proposed approach.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2837219</identifier><identifier>PMID: 29897870</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>feature fusion ; hypergraph ; Image edge detection ; Image retrieval ; pseudo relevance feedback ; Semantics ; Social network services ; Tag-based image retrieval ; Task analysis ; visual feature ; Visualization</subject><ispartof>IEEE transactions on image processing, 2018-09, Vol.27 (9), p.4437-4451</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5e700a08835fd8a8a74b71bba15b705f89c61c67a0cb0589d2db867658495e4b3</citedby><cites>FETCH-LOGICAL-c319t-5e700a08835fd8a8a74b71bba15b705f89c61c67a0cb0589d2db867658495e4b3</cites><orcidid>0000-0001-5545-7217 ; 0000-0002-3173-6307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8360131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8360131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29897870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yaxiong</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Qian, Xueming</creatorcontrib><creatorcontrib>Han, Junwei</creatorcontrib><title>Joint Hypergraph Learning for Tag-Based Image Retrieval</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated. However, most existing methods use these visual features separately or sequentially. In this paper, we propose a global and local visual features fusion approach to learn the relevance of images by hypergraph approach. A hypergraph is constructed first by utilizing global, local visual features, and tag information. Then, we propose a pseudo-relevance feedback mechanism to obtain the pseudo-positive images. Finally, with the hypergraph and pseudo relevance feedback, we adopt the hypergraph learning algorithm to calculate the relevance score of each image to the query. Experimental results demonstrate the effectiveness of the proposed approach.</description><subject>feature fusion</subject><subject>hypergraph</subject><subject>Image edge detection</subject><subject>Image retrieval</subject><subject>pseudo relevance feedback</subject><subject>Semantics</subject><subject>Social network services</subject><subject>Tag-based image retrieval</subject><subject>Task analysis</subject><subject>visual feature</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9Lw0AQhRdRbK3eBUFy9JI6k81md49a1FYKitRz2E0mMZIfdTcV-t-b0trTPJjvvcPH2DXCFBH0_WrxPo0A1TRSXEaoT9gYdYwhQBydDhmEDCXGesQuvP8GwFhgcs5GkVZaKgljJl-7qu2D-XZNrnRm_RUsybi2asug6FywMmX4aDzlwaIxJQUf1LuKfk19yc4KU3u6OtwJ-3x-Ws3m4fLtZTF7WIYZR92HgiSAAaW4KHJllJGxlWitQWEliELpLMEskQYyC0LpPMqtSmQiVKwFxZZP2N1-d-26nw35Pm0qn1Fdm5a6jU8jECJBzQcBEwZ7NHOd946KdO2qxrhtipDudKWDrnSnKz3oGiq3h_WNbSg_Fv79DMDNHqiI6PhWPAHkyP8AwHxsTA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Wang, Yaxiong</creator><creator>Zhu, Li</creator><creator>Qian, Xueming</creator><creator>Han, Junwei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5545-7217</orcidid><orcidid>https://orcid.org/0000-0002-3173-6307</orcidid></search><sort><creationdate>201809</creationdate><title>Joint Hypergraph Learning for Tag-Based Image Retrieval</title><author>Wang, Yaxiong ; Zhu, Li ; Qian, Xueming ; Han, Junwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5e700a08835fd8a8a74b71bba15b705f89c61c67a0cb0589d2db867658495e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>feature fusion</topic><topic>hypergraph</topic><topic>Image edge detection</topic><topic>Image retrieval</topic><topic>pseudo relevance feedback</topic><topic>Semantics</topic><topic>Social network services</topic><topic>Tag-based image retrieval</topic><topic>Task analysis</topic><topic>visual feature</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yaxiong</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Qian, Xueming</creatorcontrib><creatorcontrib>Han, Junwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yaxiong</au><au>Zhu, Li</au><au>Qian, Xueming</au><au>Han, Junwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Hypergraph Learning for Tag-Based Image Retrieval</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-09</date><risdate>2018</risdate><volume>27</volume><issue>9</issue><spage>4437</spage><epage>4451</epage><pages>4437-4451</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>As the image sharing websites like Flickr become more and more popular, extensive scholars concentrate on tag-based image retrieval. It is one of the important ways to find images contributed by social users. In this research field, tag information and diverse visual features have been investigated. However, most existing methods use these visual features separately or sequentially. In this paper, we propose a global and local visual features fusion approach to learn the relevance of images by hypergraph approach. A hypergraph is constructed first by utilizing global, local visual features, and tag information. Then, we propose a pseudo-relevance feedback mechanism to obtain the pseudo-positive images. Finally, with the hypergraph and pseudo relevance feedback, we adopt the hypergraph learning algorithm to calculate the relevance score of each image to the query. Experimental results demonstrate the effectiveness of the proposed approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29897870</pmid><doi>10.1109/TIP.2018.2837219</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5545-7217</orcidid><orcidid>https://orcid.org/0000-0002-3173-6307</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2018-09, Vol.27 (9), p.4437-4451 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2018_2837219 |
source | IEEE Electronic Library (IEL) |
subjects | feature fusion hypergraph Image edge detection Image retrieval pseudo relevance feedback Semantics Social network services Tag-based image retrieval Task analysis visual feature Visualization |
title | Joint Hypergraph Learning for Tag-Based Image Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Hypergraph%20Learning%20for%20Tag-Based%20Image%20Retrieval&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Yaxiong&rft.date=2018-09&rft.volume=27&rft.issue=9&rft.spage=4437&rft.epage=4451&rft.pages=4437-4451&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2837219&rft_dat=%3Cproquest_RIE%3E2055619328%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055619328&rft_id=info:pmid/29897870&rft_ieee_id=8360131&rfr_iscdi=true |