Subspace Clustering via Learning an Adaptive Low-Rank Graph

By using a sparse representation or low-rank representation of data, the graph-based subspace clustering has recently attracted considerable attention in computer vision, given its capability and efficiency in clustering data. However, the graph weights built using the representation coefficients ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2018-08, Vol.27 (8), p.3716-3728
Hauptverfasser: Yin, Ming, Xie, Shengli, Wu, Zongze, Zhang, Yun, Gao, Junbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!