Contrast Enhancement Based on Intrinsic Image Decomposition
In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regular...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2017-08, Vol.26 (8), p.3981-3994 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3994 |
---|---|
container_issue | 8 |
container_start_page | 3981 |
container_title | IEEE transactions on image processing |
container_volume | 26 |
creator | Yue, Huanjing Yang, Jingyu Sun, Xiaoyan Wu, Feng Hou, Chunping |
description | In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regularize the reflectance layer to be piecewise constant by introducing a weighted ℓ 1 norm constraint on neighboring pixels according to the color similarity, so that the decomposed reflectance would not be affected much by the illumination information. The illumination layer is regularized by a piecewise smoothness constraint. The proposed model is effectively solved by the Split Bregman algorithm. Then, by adjusting the illumination layer, we obtain the enhancement result. To avoid potential color artifacts introduced by illumination adjusting and reduce computing complexity, the proposed decomposition model is performed on the value channel in HSV space. Experiment results demonstrate that the proposed method performs well for a wide variety of images, and achieves better or comparable subjective and objective quality compared with the state-of-the-art methods. |
doi_str_mv | 10.1109/TIP.2017.2703078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2017_2703078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7924358</ieee_id><sourcerecordid>1899116728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-93f5a9bfe0076687538a507be7c1a46ca13d6fc5e24268179b0b6ecbeb284ecd3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlbvgiB79LI1k2TzgSetVRcKeqjnkE1ndaWb1M324L93S6tzmYH3g-Eh5BLoFICa22X5NmUU1JQpyqnSR2QMRkBOqWDHw00LlSsQZkTOUvqiFEQB8pSMmBZmN2NyN4uh71zqs3n4dMFji6HPHlzCVRZDVg5iE1Ljs7J1H5g9oo_tJqamb2I4Jye1Wye8OOwJeX-aL2cv-eL1uZzdL3LPwfS54XXhTFUjpUpKrQquXUFVhcqDE9I74CtZ-wKZYFKDMhWtJPoKq-FN9Cs-ITf73k0Xv7eYets2yeN67QLGbbKgjQGQiunBSvdW38WUOqztpmta1_1YoHaHzA7I7A6ZPSAbIteH9m3V4uo_8MdoMFztDQ0i_svKMMELzX8B92hvPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899116728</pqid></control><display><type>article</type><title>Contrast Enhancement Based on Intrinsic Image Decomposition</title><source>IEEE Electronic Library (IEL)</source><creator>Yue, Huanjing ; Yang, Jingyu ; Sun, Xiaoyan ; Wu, Feng ; Hou, Chunping</creator><creatorcontrib>Yue, Huanjing ; Yang, Jingyu ; Sun, Xiaoyan ; Wu, Feng ; Hou, Chunping</creatorcontrib><description>In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regularize the reflectance layer to be piecewise constant by introducing a weighted ℓ 1 norm constraint on neighboring pixels according to the color similarity, so that the decomposed reflectance would not be affected much by the illumination information. The illumination layer is regularized by a piecewise smoothness constraint. The proposed model is effectively solved by the Split Bregman algorithm. Then, by adjusting the illumination layer, we obtain the enhancement result. To avoid potential color artifacts introduced by illumination adjusting and reduce computing complexity, the proposed decomposition model is performed on the value channel in HSV space. Experiment results demonstrate that the proposed method performs well for a wide variety of images, and achieves better or comparable subjective and objective quality compared with the state-of-the-art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2703078</identifier><identifier>PMID: 28499999</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Complexity theory ; Computational modeling ; Contrast enhancement ; Histograms ; illumination ; Image color analysis ; Image decomposition ; intrinsic image decomposition ; Lighting ; reflectance ; Sun</subject><ispartof>IEEE transactions on image processing, 2017-08, Vol.26 (8), p.3981-3994</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-93f5a9bfe0076687538a507be7c1a46ca13d6fc5e24268179b0b6ecbeb284ecd3</citedby><cites>FETCH-LOGICAL-c319t-93f5a9bfe0076687538a507be7c1a46ca13d6fc5e24268179b0b6ecbeb284ecd3</cites><orcidid>0000-0003-2517-9783 ; 0000-0002-7521-7920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7924358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7924358$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28499999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Huanjing</creatorcontrib><creatorcontrib>Yang, Jingyu</creatorcontrib><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Hou, Chunping</creatorcontrib><title>Contrast Enhancement Based on Intrinsic Image Decomposition</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regularize the reflectance layer to be piecewise constant by introducing a weighted ℓ 1 norm constraint on neighboring pixels according to the color similarity, so that the decomposed reflectance would not be affected much by the illumination information. The illumination layer is regularized by a piecewise smoothness constraint. The proposed model is effectively solved by the Split Bregman algorithm. Then, by adjusting the illumination layer, we obtain the enhancement result. To avoid potential color artifacts introduced by illumination adjusting and reduce computing complexity, the proposed decomposition model is performed on the value channel in HSV space. Experiment results demonstrate that the proposed method performs well for a wide variety of images, and achieves better or comparable subjective and objective quality compared with the state-of-the-art methods.</description><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Contrast enhancement</subject><subject>Histograms</subject><subject>illumination</subject><subject>Image color analysis</subject><subject>Image decomposition</subject><subject>intrinsic image decomposition</subject><subject>Lighting</subject><subject>reflectance</subject><subject>Sun</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMotlbvgiB79LI1k2TzgSetVRcKeqjnkE1ndaWb1M324L93S6tzmYH3g-Eh5BLoFICa22X5NmUU1JQpyqnSR2QMRkBOqWDHw00LlSsQZkTOUvqiFEQB8pSMmBZmN2NyN4uh71zqs3n4dMFji6HPHlzCVRZDVg5iE1Ljs7J1H5g9oo_tJqamb2I4Jye1Wye8OOwJeX-aL2cv-eL1uZzdL3LPwfS54XXhTFUjpUpKrQquXUFVhcqDE9I74CtZ-wKZYFKDMhWtJPoKq-FN9Cs-ITf73k0Xv7eYets2yeN67QLGbbKgjQGQiunBSvdW38WUOqztpmta1_1YoHaHzA7I7A6ZPSAbIteH9m3V4uo_8MdoMFztDQ0i_svKMMELzX8B92hvPw</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Yue, Huanjing</creator><creator>Yang, Jingyu</creator><creator>Sun, Xiaoyan</creator><creator>Wu, Feng</creator><creator>Hou, Chunping</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2517-9783</orcidid><orcidid>https://orcid.org/0000-0002-7521-7920</orcidid></search><sort><creationdate>201708</creationdate><title>Contrast Enhancement Based on Intrinsic Image Decomposition</title><author>Yue, Huanjing ; Yang, Jingyu ; Sun, Xiaoyan ; Wu, Feng ; Hou, Chunping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-93f5a9bfe0076687538a507be7c1a46ca13d6fc5e24268179b0b6ecbeb284ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Contrast enhancement</topic><topic>Histograms</topic><topic>illumination</topic><topic>Image color analysis</topic><topic>Image decomposition</topic><topic>intrinsic image decomposition</topic><topic>Lighting</topic><topic>reflectance</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Huanjing</creatorcontrib><creatorcontrib>Yang, Jingyu</creatorcontrib><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Hou, Chunping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yue, Huanjing</au><au>Yang, Jingyu</au><au>Sun, Xiaoyan</au><au>Wu, Feng</au><au>Hou, Chunping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrast Enhancement Based on Intrinsic Image Decomposition</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-08</date><risdate>2017</risdate><volume>26</volume><issue>8</issue><spage>3981</spage><epage>3994</epage><pages>3981-3994</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regularize the reflectance layer to be piecewise constant by introducing a weighted ℓ 1 norm constraint on neighboring pixels according to the color similarity, so that the decomposed reflectance would not be affected much by the illumination information. The illumination layer is regularized by a piecewise smoothness constraint. The proposed model is effectively solved by the Split Bregman algorithm. Then, by adjusting the illumination layer, we obtain the enhancement result. To avoid potential color artifacts introduced by illumination adjusting and reduce computing complexity, the proposed decomposition model is performed on the value channel in HSV space. Experiment results demonstrate that the proposed method performs well for a wide variety of images, and achieves better or comparable subjective and objective quality compared with the state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28499999</pmid><doi>10.1109/TIP.2017.2703078</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2517-9783</orcidid><orcidid>https://orcid.org/0000-0002-7521-7920</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2017-08, Vol.26 (8), p.3981-3994 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2017_2703078 |
source | IEEE Electronic Library (IEL) |
subjects | Complexity theory Computational modeling Contrast enhancement Histograms illumination Image color analysis Image decomposition intrinsic image decomposition Lighting reflectance Sun |
title | Contrast Enhancement Based on Intrinsic Image Decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrast%20Enhancement%20Based%20on%20Intrinsic%20Image%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Yue,%20Huanjing&rft.date=2017-08&rft.volume=26&rft.issue=8&rft.spage=3981&rft.epage=3994&rft.pages=3981-3994&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2703078&rft_dat=%3Cproquest_RIE%3E1899116728%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899116728&rft_id=info:pmid/28499999&rft_ieee_id=7924358&rfr_iscdi=true |