Contrast Enhancement Based on Intrinsic Image Decomposition

In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-08, Vol.26 (8), p.3981-3994
Hauptverfasser: Yue, Huanjing, Yang, Jingyu, Sun, Xiaoyan, Wu, Feng, Hou, Chunping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3994
container_issue 8
container_start_page 3981
container_title IEEE transactions on image processing
container_volume 26
creator Yue, Huanjing
Yang, Jingyu
Sun, Xiaoyan
Wu, Feng
Hou, Chunping
description In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regularize the reflectance layer to be piecewise constant by introducing a weighted ℓ 1 norm constraint on neighboring pixels according to the color similarity, so that the decomposed reflectance would not be affected much by the illumination information. The illumination layer is regularized by a piecewise smoothness constraint. The proposed model is effectively solved by the Split Bregman algorithm. Then, by adjusting the illumination layer, we obtain the enhancement result. To avoid potential color artifacts introduced by illumination adjusting and reduce computing complexity, the proposed decomposition model is performed on the value channel in HSV space. Experiment results demonstrate that the proposed method performs well for a wide variety of images, and achieves better or comparable subjective and objective quality compared with the state-of-the-art methods.
doi_str_mv 10.1109/TIP.2017.2703078
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2017_2703078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7924358</ieee_id><sourcerecordid>1899116728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-93f5a9bfe0076687538a507be7c1a46ca13d6fc5e24268179b0b6ecbeb284ecd3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlbvgiB79LI1k2TzgSetVRcKeqjnkE1ndaWb1M324L93S6tzmYH3g-Eh5BLoFICa22X5NmUU1JQpyqnSR2QMRkBOqWDHw00LlSsQZkTOUvqiFEQB8pSMmBZmN2NyN4uh71zqs3n4dMFji6HPHlzCVRZDVg5iE1Ljs7J1H5g9oo_tJqamb2I4Jye1Wye8OOwJeX-aL2cv-eL1uZzdL3LPwfS54XXhTFUjpUpKrQquXUFVhcqDE9I74CtZ-wKZYFKDMhWtJPoKq-FN9Cs-ITf73k0Xv7eYets2yeN67QLGbbKgjQGQiunBSvdW38WUOqztpmta1_1YoHaHzA7I7A6ZPSAbIteH9m3V4uo_8MdoMFztDQ0i_svKMMELzX8B92hvPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899116728</pqid></control><display><type>article</type><title>Contrast Enhancement Based on Intrinsic Image Decomposition</title><source>IEEE Electronic Library (IEL)</source><creator>Yue, Huanjing ; Yang, Jingyu ; Sun, Xiaoyan ; Wu, Feng ; Hou, Chunping</creator><creatorcontrib>Yue, Huanjing ; Yang, Jingyu ; Sun, Xiaoyan ; Wu, Feng ; Hou, Chunping</creatorcontrib><description>In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regularize the reflectance layer to be piecewise constant by introducing a weighted ℓ 1 norm constraint on neighboring pixels according to the color similarity, so that the decomposed reflectance would not be affected much by the illumination information. The illumination layer is regularized by a piecewise smoothness constraint. The proposed model is effectively solved by the Split Bregman algorithm. Then, by adjusting the illumination layer, we obtain the enhancement result. To avoid potential color artifacts introduced by illumination adjusting and reduce computing complexity, the proposed decomposition model is performed on the value channel in HSV space. Experiment results demonstrate that the proposed method performs well for a wide variety of images, and achieves better or comparable subjective and objective quality compared with the state-of-the-art methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2703078</identifier><identifier>PMID: 28499999</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Complexity theory ; Computational modeling ; Contrast enhancement ; Histograms ; illumination ; Image color analysis ; Image decomposition ; intrinsic image decomposition ; Lighting ; reflectance ; Sun</subject><ispartof>IEEE transactions on image processing, 2017-08, Vol.26 (8), p.3981-3994</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-93f5a9bfe0076687538a507be7c1a46ca13d6fc5e24268179b0b6ecbeb284ecd3</citedby><cites>FETCH-LOGICAL-c319t-93f5a9bfe0076687538a507be7c1a46ca13d6fc5e24268179b0b6ecbeb284ecd3</cites><orcidid>0000-0003-2517-9783 ; 0000-0002-7521-7920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7924358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7924358$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28499999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Huanjing</creatorcontrib><creatorcontrib>Yang, Jingyu</creatorcontrib><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Hou, Chunping</creatorcontrib><title>Contrast Enhancement Based on Intrinsic Image Decomposition</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regularize the reflectance layer to be piecewise constant by introducing a weighted ℓ 1 norm constraint on neighboring pixels according to the color similarity, so that the decomposed reflectance would not be affected much by the illumination information. The illumination layer is regularized by a piecewise smoothness constraint. The proposed model is effectively solved by the Split Bregman algorithm. Then, by adjusting the illumination layer, we obtain the enhancement result. To avoid potential color artifacts introduced by illumination adjusting and reduce computing complexity, the proposed decomposition model is performed on the value channel in HSV space. Experiment results demonstrate that the proposed method performs well for a wide variety of images, and achieves better or comparable subjective and objective quality compared with the state-of-the-art methods.</description><subject>Complexity theory</subject><subject>Computational modeling</subject><subject>Contrast enhancement</subject><subject>Histograms</subject><subject>illumination</subject><subject>Image color analysis</subject><subject>Image decomposition</subject><subject>intrinsic image decomposition</subject><subject>Lighting</subject><subject>reflectance</subject><subject>Sun</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMotlbvgiB79LI1k2TzgSetVRcKeqjnkE1ndaWb1M324L93S6tzmYH3g-Eh5BLoFICa22X5NmUU1JQpyqnSR2QMRkBOqWDHw00LlSsQZkTOUvqiFEQB8pSMmBZmN2NyN4uh71zqs3n4dMFji6HPHlzCVRZDVg5iE1Ljs7J1H5g9oo_tJqamb2I4Jye1Wye8OOwJeX-aL2cv-eL1uZzdL3LPwfS54XXhTFUjpUpKrQquXUFVhcqDE9I74CtZ-wKZYFKDMhWtJPoKq-FN9Cs-ITf73k0Xv7eYets2yeN67QLGbbKgjQGQiunBSvdW38WUOqztpmta1_1YoHaHzA7I7A6ZPSAbIteH9m3V4uo_8MdoMFztDQ0i_svKMMELzX8B92hvPw</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Yue, Huanjing</creator><creator>Yang, Jingyu</creator><creator>Sun, Xiaoyan</creator><creator>Wu, Feng</creator><creator>Hou, Chunping</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2517-9783</orcidid><orcidid>https://orcid.org/0000-0002-7521-7920</orcidid></search><sort><creationdate>201708</creationdate><title>Contrast Enhancement Based on Intrinsic Image Decomposition</title><author>Yue, Huanjing ; Yang, Jingyu ; Sun, Xiaoyan ; Wu, Feng ; Hou, Chunping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-93f5a9bfe0076687538a507be7c1a46ca13d6fc5e24268179b0b6ecbeb284ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complexity theory</topic><topic>Computational modeling</topic><topic>Contrast enhancement</topic><topic>Histograms</topic><topic>illumination</topic><topic>Image color analysis</topic><topic>Image decomposition</topic><topic>intrinsic image decomposition</topic><topic>Lighting</topic><topic>reflectance</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Huanjing</creatorcontrib><creatorcontrib>Yang, Jingyu</creatorcontrib><creatorcontrib>Sun, Xiaoyan</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Hou, Chunping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yue, Huanjing</au><au>Yang, Jingyu</au><au>Sun, Xiaoyan</au><au>Wu, Feng</au><au>Hou, Chunping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrast Enhancement Based on Intrinsic Image Decomposition</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-08</date><risdate>2017</risdate><volume>26</volume><issue>8</issue><spage>3981</spage><epage>3994</epage><pages>3981-3994</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose to introduce intrinsic image decomposition priors into decomposition models for contrast enhancement. Since image decomposition is a highly illposed problem, we introduce constraints on both reflectance and illumination layers to yield a highly reliable solution. We regularize the reflectance layer to be piecewise constant by introducing a weighted ℓ 1 norm constraint on neighboring pixels according to the color similarity, so that the decomposed reflectance would not be affected much by the illumination information. The illumination layer is regularized by a piecewise smoothness constraint. The proposed model is effectively solved by the Split Bregman algorithm. Then, by adjusting the illumination layer, we obtain the enhancement result. To avoid potential color artifacts introduced by illumination adjusting and reduce computing complexity, the proposed decomposition model is performed on the value channel in HSV space. Experiment results demonstrate that the proposed method performs well for a wide variety of images, and achieves better or comparable subjective and objective quality compared with the state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28499999</pmid><doi>10.1109/TIP.2017.2703078</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2517-9783</orcidid><orcidid>https://orcid.org/0000-0002-7521-7920</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2017-08, Vol.26 (8), p.3981-3994
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2017_2703078
source IEEE Electronic Library (IEL)
subjects Complexity theory
Computational modeling
Contrast enhancement
Histograms
illumination
Image color analysis
Image decomposition
intrinsic image decomposition
Lighting
reflectance
Sun
title Contrast Enhancement Based on Intrinsic Image Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrast%20Enhancement%20Based%20on%20Intrinsic%20Image%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Yue,%20Huanjing&rft.date=2017-08&rft.volume=26&rft.issue=8&rft.spage=3981&rft.epage=3994&rft.pages=3981-3994&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2703078&rft_dat=%3Cproquest_RIE%3E1899116728%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899116728&rft_id=info:pmid/28499999&rft_ieee_id=7924358&rfr_iscdi=true