Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information
This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matche...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2017-06, Vol.26 (6), p.3064-3076 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3076 |
---|---|
container_issue | 6 |
container_start_page | 3064 |
container_title | IEEE transactions on image processing |
container_volume | 26 |
creator | Li, Yong Jin, Hongbin Wu, Jiatao Liu, Jie |
description | This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matches, global information is utilized for evaluating keypoint matches and a bootstrap technique is employed to reduce the computational cost. A keypoint match determines a transformation T and a similarity metric between the reference and the transformed test image by T. The similarity metric encodes global information over entire images, and hence, a higher similarity indicates the match can bring more image content into alignment, implying it tends to be correct. Unfortunately, exhausting triplets/quadruples of matches for affine/projective transformation is computationally intractable, when the number of keypoints is large. To reduce the computational cost, a bootstrap technique is employed that starts from single matches for a translation and rotation model, and goes increasingly to quadruples of four matches for a projective model. The global information screens for "good" matches at each stage and the bootstrap strategy makes the screening process computationally feasible. Experimental results show that the proposed method can establish reliable keypoint matches on challenging multimodal images of strong multimodality. |
doi_str_mv | 10.1109/TIP.2017.2695885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2017_2695885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7904701</ieee_id><sourcerecordid>1891459427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-75d08c1491400f4f0e41bc287089c7fa613e031df5ecad35af07ad9e91100be03</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4Mobk7fBUHy6EvnXZs2zaOOOYcbCk58LGmbbpG2mU36sP_ejM29XI7cdz-Oj5BbhDEiiMfV_GMcAvJxmIg4TeMzMkTBMABg4bnvIeYBRyYG5MraHwBkMSaXZBCmLErSRAyJnFon81rbjW7X9E3ttka3ji6lKzbKUtPSZV873ZhS1nTeyLX__NZuQ5-NcdZ1cks_fXVqvaOyLemsNvmebCvTNdJp016Ti0rWVt0c3xH5epmuJq_B4n02nzwtgiJC4QIel5AW_lZkABWrQDHMizDlkIqCVzLBSEGEZRWrQpZRLCvgshRKeBGQ-9GIPBxyt5357ZV1WaNtoepatsr0NsPUR8eChdyjcECLzljbqSrbdrqR3S5DyPZiMy8224vNjmL9yv0xvc8bVZ4W_k164O4AaKXUacwFMA4Y_QG8JH0S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891459427</pqid></control><display><type>article</type><title>Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yong ; Jin, Hongbin ; Wu, Jiatao ; Liu, Jie</creator><creatorcontrib>Li, Yong ; Jin, Hongbin ; Wu, Jiatao ; Liu, Jie</creatorcontrib><description>This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matches, global information is utilized for evaluating keypoint matches and a bootstrap technique is employed to reduce the computational cost. A keypoint match determines a transformation T and a similarity metric between the reference and the transformed test image by T. The similarity metric encodes global information over entire images, and hence, a higher similarity indicates the match can bring more image content into alignment, implying it tends to be correct. Unfortunately, exhausting triplets/quadruples of matches for affine/projective transformation is computationally intractable, when the number of keypoints is large. To reduce the computational cost, a bootstrap technique is employed that starts from single matches for a translation and rotation model, and goes increasingly to quadruples of four matches for a projective model. The global information screens for "good" matches at each stage and the bootstrap strategy makes the screening process computationally feasible. Experimental results show that the proposed method can establish reliable keypoint matches on challenging multimodal images of strong multimodality.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2695885</identifier><identifier>PMID: 28436869</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>bootstrap ; Buildings ; Computational efficiency ; Computational modeling ; global information ; Image edge detection ; keypoint matching ; Measurement ; Multimodal image registration ; Reliability</subject><ispartof>IEEE transactions on image processing, 2017-06, Vol.26 (6), p.3064-3076</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-75d08c1491400f4f0e41bc287089c7fa613e031df5ecad35af07ad9e91100be03</citedby><cites>FETCH-LOGICAL-c319t-75d08c1491400f4f0e41bc287089c7fa613e031df5ecad35af07ad9e91100be03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7904701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7904701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28436869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Jin, Hongbin</creatorcontrib><creatorcontrib>Wu, Jiatao</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><title>Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matches, global information is utilized for evaluating keypoint matches and a bootstrap technique is employed to reduce the computational cost. A keypoint match determines a transformation T and a similarity metric between the reference and the transformed test image by T. The similarity metric encodes global information over entire images, and hence, a higher similarity indicates the match can bring more image content into alignment, implying it tends to be correct. Unfortunately, exhausting triplets/quadruples of matches for affine/projective transformation is computationally intractable, when the number of keypoints is large. To reduce the computational cost, a bootstrap technique is employed that starts from single matches for a translation and rotation model, and goes increasingly to quadruples of four matches for a projective model. The global information screens for "good" matches at each stage and the bootstrap strategy makes the screening process computationally feasible. Experimental results show that the proposed method can establish reliable keypoint matches on challenging multimodal images of strong multimodality.</description><subject>bootstrap</subject><subject>Buildings</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>global information</subject><subject>Image edge detection</subject><subject>keypoint matching</subject><subject>Measurement</subject><subject>Multimodal image registration</subject><subject>Reliability</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4Mobk7fBUHy6EvnXZs2zaOOOYcbCk58LGmbbpG2mU36sP_ejM29XI7cdz-Oj5BbhDEiiMfV_GMcAvJxmIg4TeMzMkTBMABg4bnvIeYBRyYG5MraHwBkMSaXZBCmLErSRAyJnFon81rbjW7X9E3ttka3ji6lKzbKUtPSZV873ZhS1nTeyLX__NZuQ5-NcdZ1cks_fXVqvaOyLemsNvmebCvTNdJp016Ti0rWVt0c3xH5epmuJq_B4n02nzwtgiJC4QIel5AW_lZkABWrQDHMizDlkIqCVzLBSEGEZRWrQpZRLCvgshRKeBGQ-9GIPBxyt5357ZV1WaNtoepatsr0NsPUR8eChdyjcECLzljbqSrbdrqR3S5DyPZiMy8224vNjmL9yv0xvc8bVZ4W_k164O4AaKXUacwFMA4Y_QG8JH0S</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Li, Yong</creator><creator>Jin, Hongbin</creator><creator>Wu, Jiatao</creator><creator>Liu, Jie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information</title><author>Li, Yong ; Jin, Hongbin ; Wu, Jiatao ; Liu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-75d08c1491400f4f0e41bc287089c7fa613e031df5ecad35af07ad9e91100be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>bootstrap</topic><topic>Buildings</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>global information</topic><topic>Image edge detection</topic><topic>keypoint matching</topic><topic>Measurement</topic><topic>Multimodal image registration</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Jin, Hongbin</creatorcontrib><creatorcontrib>Wu, Jiatao</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yong</au><au>Jin, Hongbin</au><au>Wu, Jiatao</au><au>Liu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-06</date><risdate>2017</risdate><volume>26</volume><issue>6</issue><spage>3064</spage><epage>3076</epage><pages>3064-3076</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matches, global information is utilized for evaluating keypoint matches and a bootstrap technique is employed to reduce the computational cost. A keypoint match determines a transformation T and a similarity metric between the reference and the transformed test image by T. The similarity metric encodes global information over entire images, and hence, a higher similarity indicates the match can bring more image content into alignment, implying it tends to be correct. Unfortunately, exhausting triplets/quadruples of matches for affine/projective transformation is computationally intractable, when the number of keypoints is large. To reduce the computational cost, a bootstrap technique is employed that starts from single matches for a translation and rotation model, and goes increasingly to quadruples of four matches for a projective model. The global information screens for "good" matches at each stage and the bootstrap strategy makes the screening process computationally feasible. Experimental results show that the proposed method can establish reliable keypoint matches on challenging multimodal images of strong multimodality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28436869</pmid><doi>10.1109/TIP.2017.2695885</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2017-06, Vol.26 (6), p.3064-3076 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2017_2695885 |
source | IEEE Electronic Library (IEL) |
subjects | bootstrap Buildings Computational efficiency Computational modeling global information Image edge detection keypoint matching Measurement Multimodal image registration Reliability |
title | Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20Keypoint%20Matches%20on%20Multimodal%20Images%20With%20Bootstrap%20Strategy%20and%20Global%20Information&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Yong&rft.date=2017-06&rft.volume=26&rft.issue=6&rft.spage=3064&rft.epage=3076&rft.pages=3064-3076&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2695885&rft_dat=%3Cproquest_RIE%3E1891459427%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891459427&rft_id=info:pmid/28436869&rft_ieee_id=7904701&rfr_iscdi=true |