Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information

This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matche...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-06, Vol.26 (6), p.3064-3076
Hauptverfasser: Li, Yong, Jin, Hongbin, Wu, Jiatao, Liu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3076
container_issue 6
container_start_page 3064
container_title IEEE transactions on image processing
container_volume 26
creator Li, Yong
Jin, Hongbin
Wu, Jiatao
Liu, Jie
description This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matches, global information is utilized for evaluating keypoint matches and a bootstrap technique is employed to reduce the computational cost. A keypoint match determines a transformation T and a similarity metric between the reference and the transformed test image by T. The similarity metric encodes global information over entire images, and hence, a higher similarity indicates the match can bring more image content into alignment, implying it tends to be correct. Unfortunately, exhausting triplets/quadruples of matches for affine/projective transformation is computationally intractable, when the number of keypoints is large. To reduce the computational cost, a bootstrap technique is employed that starts from single matches for a translation and rotation model, and goes increasingly to quadruples of four matches for a projective model. The global information screens for "good" matches at each stage and the bootstrap strategy makes the screening process computationally feasible. Experimental results show that the proposed method can establish reliable keypoint matches on challenging multimodal images of strong multimodality.
doi_str_mv 10.1109/TIP.2017.2695885
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2017_2695885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7904701</ieee_id><sourcerecordid>1891459427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-75d08c1491400f4f0e41bc287089c7fa613e031df5ecad35af07ad9e91100be03</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4Mobk7fBUHy6EvnXZs2zaOOOYcbCk58LGmbbpG2mU36sP_ejM29XI7cdz-Oj5BbhDEiiMfV_GMcAvJxmIg4TeMzMkTBMABg4bnvIeYBRyYG5MraHwBkMSaXZBCmLErSRAyJnFon81rbjW7X9E3ttka3ji6lKzbKUtPSZV873ZhS1nTeyLX__NZuQ5-NcdZ1cks_fXVqvaOyLemsNvmebCvTNdJp016Ti0rWVt0c3xH5epmuJq_B4n02nzwtgiJC4QIel5AW_lZkABWrQDHMizDlkIqCVzLBSEGEZRWrQpZRLCvgshRKeBGQ-9GIPBxyt5357ZV1WaNtoepatsr0NsPUR8eChdyjcECLzljbqSrbdrqR3S5DyPZiMy8224vNjmL9yv0xvc8bVZ4W_k164O4AaKXUacwFMA4Y_QG8JH0S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891459427</pqid></control><display><type>article</type><title>Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yong ; Jin, Hongbin ; Wu, Jiatao ; Liu, Jie</creator><creatorcontrib>Li, Yong ; Jin, Hongbin ; Wu, Jiatao ; Liu, Jie</creatorcontrib><description>This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matches, global information is utilized for evaluating keypoint matches and a bootstrap technique is employed to reduce the computational cost. A keypoint match determines a transformation T and a similarity metric between the reference and the transformed test image by T. The similarity metric encodes global information over entire images, and hence, a higher similarity indicates the match can bring more image content into alignment, implying it tends to be correct. Unfortunately, exhausting triplets/quadruples of matches for affine/projective transformation is computationally intractable, when the number of keypoints is large. To reduce the computational cost, a bootstrap technique is employed that starts from single matches for a translation and rotation model, and goes increasingly to quadruples of four matches for a projective model. The global information screens for "good" matches at each stage and the bootstrap strategy makes the screening process computationally feasible. Experimental results show that the proposed method can establish reliable keypoint matches on challenging multimodal images of strong multimodality.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2017.2695885</identifier><identifier>PMID: 28436869</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>bootstrap ; Buildings ; Computational efficiency ; Computational modeling ; global information ; Image edge detection ; keypoint matching ; Measurement ; Multimodal image registration ; Reliability</subject><ispartof>IEEE transactions on image processing, 2017-06, Vol.26 (6), p.3064-3076</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-75d08c1491400f4f0e41bc287089c7fa613e031df5ecad35af07ad9e91100be03</citedby><cites>FETCH-LOGICAL-c319t-75d08c1491400f4f0e41bc287089c7fa613e031df5ecad35af07ad9e91100be03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7904701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7904701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28436869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Jin, Hongbin</creatorcontrib><creatorcontrib>Wu, Jiatao</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><title>Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matches, global information is utilized for evaluating keypoint matches and a bootstrap technique is employed to reduce the computational cost. A keypoint match determines a transformation T and a similarity metric between the reference and the transformed test image by T. The similarity metric encodes global information over entire images, and hence, a higher similarity indicates the match can bring more image content into alignment, implying it tends to be correct. Unfortunately, exhausting triplets/quadruples of matches for affine/projective transformation is computationally intractable, when the number of keypoints is large. To reduce the computational cost, a bootstrap technique is employed that starts from single matches for a translation and rotation model, and goes increasingly to quadruples of four matches for a projective model. The global information screens for "good" matches at each stage and the bootstrap strategy makes the screening process computationally feasible. Experimental results show that the proposed method can establish reliable keypoint matches on challenging multimodal images of strong multimodality.</description><subject>bootstrap</subject><subject>Buildings</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>global information</subject><subject>Image edge detection</subject><subject>keypoint matching</subject><subject>Measurement</subject><subject>Multimodal image registration</subject><subject>Reliability</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQh4Mobk7fBUHy6EvnXZs2zaOOOYcbCk58LGmbbpG2mU36sP_ejM29XI7cdz-Oj5BbhDEiiMfV_GMcAvJxmIg4TeMzMkTBMABg4bnvIeYBRyYG5MraHwBkMSaXZBCmLErSRAyJnFon81rbjW7X9E3ttka3ji6lKzbKUtPSZV873ZhS1nTeyLX__NZuQ5-NcdZ1cks_fXVqvaOyLemsNvmebCvTNdJp016Ti0rWVt0c3xH5epmuJq_B4n02nzwtgiJC4QIel5AW_lZkABWrQDHMizDlkIqCVzLBSEGEZRWrQpZRLCvgshRKeBGQ-9GIPBxyt5357ZV1WaNtoepatsr0NsPUR8eChdyjcECLzljbqSrbdrqR3S5DyPZiMy8224vNjmL9yv0xvc8bVZ4W_k164O4AaKXUacwFMA4Y_QG8JH0S</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Li, Yong</creator><creator>Jin, Hongbin</creator><creator>Wu, Jiatao</creator><creator>Liu, Jie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information</title><author>Li, Yong ; Jin, Hongbin ; Wu, Jiatao ; Liu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-75d08c1491400f4f0e41bc287089c7fa613e031df5ecad35af07ad9e91100be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>bootstrap</topic><topic>Buildings</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>global information</topic><topic>Image edge detection</topic><topic>keypoint matching</topic><topic>Measurement</topic><topic>Multimodal image registration</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Jin, Hongbin</creatorcontrib><creatorcontrib>Wu, Jiatao</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yong</au><au>Jin, Hongbin</au><au>Wu, Jiatao</au><au>Liu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2017-06</date><risdate>2017</risdate><volume>26</volume><issue>6</issue><spage>3064</spage><epage>3076</epage><pages>3064-3076</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper proposes an algorithm of building keypoint matches on multimodal images by combining a bootstrap process and global information. The correct ratio of keypoint matches built with descriptors is typically very low on multimodal images of large spectral difference. To identify correct matches, global information is utilized for evaluating keypoint matches and a bootstrap technique is employed to reduce the computational cost. A keypoint match determines a transformation T and a similarity metric between the reference and the transformed test image by T. The similarity metric encodes global information over entire images, and hence, a higher similarity indicates the match can bring more image content into alignment, implying it tends to be correct. Unfortunately, exhausting triplets/quadruples of matches for affine/projective transformation is computationally intractable, when the number of keypoints is large. To reduce the computational cost, a bootstrap technique is employed that starts from single matches for a translation and rotation model, and goes increasingly to quadruples of four matches for a projective model. The global information screens for "good" matches at each stage and the bootstrap strategy makes the screening process computationally feasible. Experimental results show that the proposed method can establish reliable keypoint matches on challenging multimodal images of strong multimodality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28436869</pmid><doi>10.1109/TIP.2017.2695885</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2017-06, Vol.26 (6), p.3064-3076
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2017_2695885
source IEEE Electronic Library (IEL)
subjects bootstrap
Buildings
Computational efficiency
Computational modeling
global information
Image edge detection
keypoint matching
Measurement
Multimodal image registration
Reliability
title Establishing Keypoint Matches on Multimodal Images With Bootstrap Strategy and Global Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishing%20Keypoint%20Matches%20on%20Multimodal%20Images%20With%20Bootstrap%20Strategy%20and%20Global%20Information&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Yong&rft.date=2017-06&rft.volume=26&rft.issue=6&rft.spage=3064&rft.epage=3076&rft.pages=3064-3076&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2017.2695885&rft_dat=%3Cproquest_RIE%3E1891459427%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891459427&rft_id=info:pmid/28436869&rft_ieee_id=7904701&rfr_iscdi=true