Semi-Local Scaling Exponent Estimation With Box-Penalty Constraints and Total-Variation Regularization

We here establish and exploit the result that 2D isotropic self-similar fields beget quasi-decorrelated wavelet coefficients and that the resulting localised log sample second moment statistic is asymptotically normal. This leads to the development of a semi-local scaling exponent estimation framewo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2016-07, Vol.25 (7), p.3167-3181
Hauptverfasser: Nelson, J. D. B., Nafornita, C., Isar, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3181
container_issue 7
container_start_page 3167
container_title IEEE transactions on image processing
container_volume 25
creator Nelson, J. D. B.
Nafornita, C.
Isar, A.
description We here establish and exploit the result that 2D isotropic self-similar fields beget quasi-decorrelated wavelet coefficients and that the resulting localised log sample second moment statistic is asymptotically normal. This leads to the development of a semi-local scaling exponent estimation framework with optimally modified weights. Furthermore, recent interest in penalty methods for least square problems and generalized Lasso for scaling exponent estimation inspires the simultaneous incorporation of both bounding box constraints and total variation smoothing into an iteratively reweighted least-square estimator framework. Numerical results on fractional Brownian fields with global and piecewise constant, semi-local Hurst parameters illustrate the benefits of the new estimators.
doi_str_mv 10.1109/TIP.2016.2551365
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2016_2551365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7448417</ieee_id><sourcerecordid>1826675992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-607c3df2715e4ae340d5adc0d853c27a132779774aa6cf918cbb7bda682d96883</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxS0EoqVwR0JCK3HhssHjr7GPEAWoFImKBjiuHK-3uNrY6dortfz1uCT0wImLx6P5vdHoPUJeAl0AUPNuc36xYBTUgkkJXMlH5BSMgJZSwR7XP5XYIghzQp7lfE0pCAnqKTlhSBFAmVMyXPpdaNfJ2bG5rE-IV83qdp-ij6VZ5RJ2toQUmx-h_Gw-pNv2wkc7lrtmmWIukw2x5MbGvtmkYsf2u53CQfDVX81j7X79aZ-TJ4Mds39xrGfk28fVZvm5XX_5dL58v24d17S0iqLj_cAQpBfWc0F7aXtHey25Y2iBM0SDKKxVbjCg3XaL294qzXqjtOZn5O1h735KN7PPpduF7Pw42ujTnDvQTCmUxrD_QKGeIzXjFX3zD3qd5qn6UCk01UqJEitFD5SbUs6TH7r9VO2b7jqg3X1cXY2ru4-rO8ZVJa-Pi-ftzvcPgr_5VODVAQje-4cxCqEFIP8NiTGYYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790715757</pqid></control><display><type>article</type><title>Semi-Local Scaling Exponent Estimation With Box-Penalty Constraints and Total-Variation Regularization</title><source>IEEE Electronic Library (IEL)</source><creator>Nelson, J. D. B. ; Nafornita, C. ; Isar, A.</creator><creatorcontrib>Nelson, J. D. B. ; Nafornita, C. ; Isar, A.</creatorcontrib><description>We here establish and exploit the result that 2D isotropic self-similar fields beget quasi-decorrelated wavelet coefficients and that the resulting localised log sample second moment statistic is asymptotically normal. This leads to the development of a semi-local scaling exponent estimation framework with optimally modified weights. Furthermore, recent interest in penalty methods for least square problems and generalized Lasso for scaling exponent estimation inspires the simultaneous incorporation of both bounding box constraints and total variation smoothing into an iteratively reweighted least-square estimator framework. Numerical results on fractional Brownian fields with global and piecewise constant, semi-local Hurst parameters illustrate the benefits of the new estimators.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2016.2551365</identifier><identifier>PMID: 27071169</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Asymptotic properties ; Constants ; Estimation ; Estimators ; Exponents ; Image reconstruction ; Least squares method ; Mathematical models ; Noise reduction ; Robustness ; Self-similarity ; Statistical methods ; Wavelet domain ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2016-07, Vol.25 (7), p.3167-3181</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-607c3df2715e4ae340d5adc0d853c27a132779774aa6cf918cbb7bda682d96883</citedby><cites>FETCH-LOGICAL-c380t-607c3df2715e4ae340d5adc0d853c27a132779774aa6cf918cbb7bda682d96883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7448417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7448417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27071169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nelson, J. D. B.</creatorcontrib><creatorcontrib>Nafornita, C.</creatorcontrib><creatorcontrib>Isar, A.</creatorcontrib><title>Semi-Local Scaling Exponent Estimation With Box-Penalty Constraints and Total-Variation Regularization</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We here establish and exploit the result that 2D isotropic self-similar fields beget quasi-decorrelated wavelet coefficients and that the resulting localised log sample second moment statistic is asymptotically normal. This leads to the development of a semi-local scaling exponent estimation framework with optimally modified weights. Furthermore, recent interest in penalty methods for least square problems and generalized Lasso for scaling exponent estimation inspires the simultaneous incorporation of both bounding box constraints and total variation smoothing into an iteratively reweighted least-square estimator framework. Numerical results on fractional Brownian fields with global and piecewise constant, semi-local Hurst parameters illustrate the benefits of the new estimators.</description><subject>Asymptotic properties</subject><subject>Constants</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Exponents</subject><subject>Image reconstruction</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Noise reduction</subject><subject>Robustness</subject><subject>Self-similarity</subject><subject>Statistical methods</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkc1vEzEQxS0EoqVwR0JCK3HhssHjr7GPEAWoFImKBjiuHK-3uNrY6dortfz1uCT0wImLx6P5vdHoPUJeAl0AUPNuc36xYBTUgkkJXMlH5BSMgJZSwR7XP5XYIghzQp7lfE0pCAnqKTlhSBFAmVMyXPpdaNfJ2bG5rE-IV83qdp-ij6VZ5RJ2toQUmx-h_Gw-pNv2wkc7lrtmmWIukw2x5MbGvtmkYsf2u53CQfDVX81j7X79aZ-TJ4Mds39xrGfk28fVZvm5XX_5dL58v24d17S0iqLj_cAQpBfWc0F7aXtHey25Y2iBM0SDKKxVbjCg3XaL294qzXqjtOZn5O1h735KN7PPpduF7Pw42ujTnDvQTCmUxrD_QKGeIzXjFX3zD3qd5qn6UCk01UqJEitFD5SbUs6TH7r9VO2b7jqg3X1cXY2ru4-rO8ZVJa-Pi-ftzvcPgr_5VODVAQje-4cxCqEFIP8NiTGYYg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Nelson, J. D. B.</creator><creator>Nafornita, C.</creator><creator>Isar, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20160701</creationdate><title>Semi-Local Scaling Exponent Estimation With Box-Penalty Constraints and Total-Variation Regularization</title><author>Nelson, J. D. B. ; Nafornita, C. ; Isar, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-607c3df2715e4ae340d5adc0d853c27a132779774aa6cf918cbb7bda682d96883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Constants</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Exponents</topic><topic>Image reconstruction</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Noise reduction</topic><topic>Robustness</topic><topic>Self-similarity</topic><topic>Statistical methods</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, J. D. B.</creatorcontrib><creatorcontrib>Nafornita, C.</creatorcontrib><creatorcontrib>Isar, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nelson, J. D. B.</au><au>Nafornita, C.</au><au>Isar, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Local Scaling Exponent Estimation With Box-Penalty Constraints and Total-Variation Regularization</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>25</volume><issue>7</issue><spage>3167</spage><epage>3181</epage><pages>3167-3181</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We here establish and exploit the result that 2D isotropic self-similar fields beget quasi-decorrelated wavelet coefficients and that the resulting localised log sample second moment statistic is asymptotically normal. This leads to the development of a semi-local scaling exponent estimation framework with optimally modified weights. Furthermore, recent interest in penalty methods for least square problems and generalized Lasso for scaling exponent estimation inspires the simultaneous incorporation of both bounding box constraints and total variation smoothing into an iteratively reweighted least-square estimator framework. Numerical results on fractional Brownian fields with global and piecewise constant, semi-local Hurst parameters illustrate the benefits of the new estimators.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27071169</pmid><doi>10.1109/TIP.2016.2551365</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2016-07, Vol.25 (7), p.3167-3181
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2016_2551365
source IEEE Electronic Library (IEL)
subjects Asymptotic properties
Constants
Estimation
Estimators
Exponents
Image reconstruction
Least squares method
Mathematical models
Noise reduction
Robustness
Self-similarity
Statistical methods
Wavelet domain
Wavelet transforms
title Semi-Local Scaling Exponent Estimation With Box-Penalty Constraints and Total-Variation Regularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Local%20Scaling%20Exponent%20Estimation%20With%20Box-Penalty%20Constraints%20and%20Total-Variation%20Regularization&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Nelson,%20J.%20D.%20B.&rft.date=2016-07-01&rft.volume=25&rft.issue=7&rft.spage=3167&rft.epage=3181&rft.pages=3167-3181&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2016.2551365&rft_dat=%3Cproquest_RIE%3E1826675992%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790715757&rft_id=info:pmid/27071169&rft_ieee_id=7448417&rfr_iscdi=true