A New Multivariate Statistical Model for Change Detection in Images Acquired by Homogeneous and Heterogeneous Sensors
Remote sensing images are commonly used to monitor the earth surface evolution. This surveillance can be conducted by detecting changes between images acquired at different times and possibly by different kinds of sensors. A representative case is when an optical image of a given area is available a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2015-03, Vol.24 (3), p.799-812 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 812 |
---|---|
container_issue | 3 |
container_start_page | 799 |
container_title | IEEE transactions on image processing |
container_volume | 24 |
creator | Prendes, Jorge Chabert, Marie Pascal, Frederic Giros, Alain Tourneret, Jean-Yves |
description | Remote sensing images are commonly used to monitor the earth surface evolution. This surveillance can be conducted by detecting changes between images acquired at different times and possibly by different kinds of sensors. A representative case is when an optical image of a given area is available and a new image is acquired in an emergency situation (resulting from a natural disaster for instance) by a radar satellite. In such a case, images with heterogeneous properties have to be compared for change detection. This paper proposes a new approach for similarity measurement between images acquired by heterogeneous sensors. The approach exploits the considered sensor physical properties and specially the associated measurement noise models and local joint distributions. These properties are inferred through manifold learning. The resulting similarity measure has been successfully applied to detect changes between many kinds of images, including pairs of optical images and pairs of optical-radar images. |
doi_str_mv | 10.1109/TIP.2014.2387013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2014_2387013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7000593</ieee_id><sourcerecordid>1652412709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a2a806f3d4f7b2bbea5c6b7ce8e8d244ef6d1079b0b08fd88f5c27ac1bcf6bc43</originalsourceid><addsrcrecordid>eNo9kdFv0zAQhyPExMbgHQkJ-REeUs6OnTiPVRm0UgdIG8-W7Zw7oyTebGfT_vultPTpTnff_XTSVxQfKCwohfbr7eb3ggHlC1bJBmj1qrigLaclAGev5x5EUzaUt-fF25T-wkwKWr8pzpkQNRUtuyimJfmJT-R66rN_1NHrjOQm6-xT9lb35Dp02BMXIlnd6XGH5BtmtNmHkfiRbAa9w0SW9mHyETtinsk6DGGHI4YpET12ZD3z8TS5wTGFmN4VZ073Cd8f62Xx5_vV7Wpdbn_92KyW29JWrcilZlpC7aqOu8YwY1ALW5vGokTZMc7R1R2FpjVgQLpOSicsa7SlxrraWF5dFl8OuXe6V_fRDzo-q6C9Wi-3aj8DSlnTSvlIZ_bzgb2P4WHClNXgk8W-1_9eV7QWjM80tDMKB9TGkFJEd8qmoPZi1CxG7cWoo5j55NMxfTIDdqeD_yZm4OMB8Ih4WjcAINqqegEBSZLY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652412709</pqid></control><display><type>article</type><title>A New Multivariate Statistical Model for Change Detection in Images Acquired by Homogeneous and Heterogeneous Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Prendes, Jorge ; Chabert, Marie ; Pascal, Frederic ; Giros, Alain ; Tourneret, Jean-Yves</creator><creatorcontrib>Prendes, Jorge ; Chabert, Marie ; Pascal, Frederic ; Giros, Alain ; Tourneret, Jean-Yves</creatorcontrib><description>Remote sensing images are commonly used to monitor the earth surface evolution. This surveillance can be conducted by detecting changes between images acquired at different times and possibly by different kinds of sensors. A representative case is when an optical image of a given area is available and a new image is acquired in an emergency situation (resulting from a natural disaster for instance) by a radar satellite. In such a case, images with heterogeneous properties have to be compared for change detection. This paper proposes a new approach for similarity measurement between images acquired by heterogeneous sensors. The approach exploits the considered sensor physical properties and specially the associated measurement noise models and local joint distributions. These properties are inferred through manifold learning. The resulting similarity measure has been successfully applied to detect changes between many kinds of images, including pairs of optical images and pairs of optical-radar images.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2387013</identifier><identifier>PMID: 25561592</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive optics ; change detection ; Computer Science ; EM algorithm ; Engineering Sciences ; Image Processing ; Image sensors ; manifold learning ; mixture models ; Networking and Internet Architecture ; Noise ; Optical images ; Optical imaging ; Optical sensors ; SAR images ; Signal and Image processing ; Synthetic aperture radar</subject><ispartof>IEEE transactions on image processing, 2015-03, Vol.24 (3), p.799-812</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a2a806f3d4f7b2bbea5c6b7ce8e8d244ef6d1079b0b08fd88f5c27ac1bcf6bc43</citedby><cites>FETCH-LOGICAL-c395t-a2a806f3d4f7b2bbea5c6b7ce8e8d244ef6d1079b0b08fd88f5c27ac1bcf6bc43</cites><orcidid>0000-0001-9869-4693 ; 0000-0003-0196-6395 ; 0000-0001-5219-3455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7000593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7000593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25561592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01127988$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Prendes, Jorge</creatorcontrib><creatorcontrib>Chabert, Marie</creatorcontrib><creatorcontrib>Pascal, Frederic</creatorcontrib><creatorcontrib>Giros, Alain</creatorcontrib><creatorcontrib>Tourneret, Jean-Yves</creatorcontrib><title>A New Multivariate Statistical Model for Change Detection in Images Acquired by Homogeneous and Heterogeneous Sensors</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Remote sensing images are commonly used to monitor the earth surface evolution. This surveillance can be conducted by detecting changes between images acquired at different times and possibly by different kinds of sensors. A representative case is when an optical image of a given area is available and a new image is acquired in an emergency situation (resulting from a natural disaster for instance) by a radar satellite. In such a case, images with heterogeneous properties have to be compared for change detection. This paper proposes a new approach for similarity measurement between images acquired by heterogeneous sensors. The approach exploits the considered sensor physical properties and specially the associated measurement noise models and local joint distributions. These properties are inferred through manifold learning. The resulting similarity measure has been successfully applied to detect changes between many kinds of images, including pairs of optical images and pairs of optical-radar images.</description><subject>Adaptive optics</subject><subject>change detection</subject><subject>Computer Science</subject><subject>EM algorithm</subject><subject>Engineering Sciences</subject><subject>Image Processing</subject><subject>Image sensors</subject><subject>manifold learning</subject><subject>mixture models</subject><subject>Networking and Internet Architecture</subject><subject>Noise</subject><subject>Optical images</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>SAR images</subject><subject>Signal and Image processing</subject><subject>Synthetic aperture radar</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kdFv0zAQhyPExMbgHQkJ-REeUs6OnTiPVRm0UgdIG8-W7Zw7oyTebGfT_vultPTpTnff_XTSVxQfKCwohfbr7eb3ggHlC1bJBmj1qrigLaclAGev5x5EUzaUt-fF25T-wkwKWr8pzpkQNRUtuyimJfmJT-R66rN_1NHrjOQm6-xT9lb35Dp02BMXIlnd6XGH5BtmtNmHkfiRbAa9w0SW9mHyETtinsk6DGGHI4YpET12ZD3z8TS5wTGFmN4VZ073Cd8f62Xx5_vV7Wpdbn_92KyW29JWrcilZlpC7aqOu8YwY1ALW5vGokTZMc7R1R2FpjVgQLpOSicsa7SlxrraWF5dFl8OuXe6V_fRDzo-q6C9Wi-3aj8DSlnTSvlIZ_bzgb2P4WHClNXgk8W-1_9eV7QWjM80tDMKB9TGkFJEd8qmoPZi1CxG7cWoo5j55NMxfTIDdqeD_yZm4OMB8Ih4WjcAINqqegEBSZLY</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Prendes, Jorge</creator><creator>Chabert, Marie</creator><creator>Pascal, Frederic</creator><creator>Giros, Alain</creator><creator>Tourneret, Jean-Yves</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9869-4693</orcidid><orcidid>https://orcid.org/0000-0003-0196-6395</orcidid><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid></search><sort><creationdate>201503</creationdate><title>A New Multivariate Statistical Model for Change Detection in Images Acquired by Homogeneous and Heterogeneous Sensors</title><author>Prendes, Jorge ; Chabert, Marie ; Pascal, Frederic ; Giros, Alain ; Tourneret, Jean-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a2a806f3d4f7b2bbea5c6b7ce8e8d244ef6d1079b0b08fd88f5c27ac1bcf6bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive optics</topic><topic>change detection</topic><topic>Computer Science</topic><topic>EM algorithm</topic><topic>Engineering Sciences</topic><topic>Image Processing</topic><topic>Image sensors</topic><topic>manifold learning</topic><topic>mixture models</topic><topic>Networking and Internet Architecture</topic><topic>Noise</topic><topic>Optical images</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>SAR images</topic><topic>Signal and Image processing</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prendes, Jorge</creatorcontrib><creatorcontrib>Chabert, Marie</creatorcontrib><creatorcontrib>Pascal, Frederic</creatorcontrib><creatorcontrib>Giros, Alain</creatorcontrib><creatorcontrib>Tourneret, Jean-Yves</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prendes, Jorge</au><au>Chabert, Marie</au><au>Pascal, Frederic</au><au>Giros, Alain</au><au>Tourneret, Jean-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Multivariate Statistical Model for Change Detection in Images Acquired by Homogeneous and Heterogeneous Sensors</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-03</date><risdate>2015</risdate><volume>24</volume><issue>3</issue><spage>799</spage><epage>812</epage><pages>799-812</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Remote sensing images are commonly used to monitor the earth surface evolution. This surveillance can be conducted by detecting changes between images acquired at different times and possibly by different kinds of sensors. A representative case is when an optical image of a given area is available and a new image is acquired in an emergency situation (resulting from a natural disaster for instance) by a radar satellite. In such a case, images with heterogeneous properties have to be compared for change detection. This paper proposes a new approach for similarity measurement between images acquired by heterogeneous sensors. The approach exploits the considered sensor physical properties and specially the associated measurement noise models and local joint distributions. These properties are inferred through manifold learning. The resulting similarity measure has been successfully applied to detect changes between many kinds of images, including pairs of optical images and pairs of optical-radar images.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25561592</pmid><doi>10.1109/TIP.2014.2387013</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9869-4693</orcidid><orcidid>https://orcid.org/0000-0003-0196-6395</orcidid><orcidid>https://orcid.org/0000-0001-5219-3455</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2015-03, Vol.24 (3), p.799-812 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2014_2387013 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive optics change detection Computer Science EM algorithm Engineering Sciences Image Processing Image sensors manifold learning mixture models Networking and Internet Architecture Noise Optical images Optical imaging Optical sensors SAR images Signal and Image processing Synthetic aperture radar |
title | A New Multivariate Statistical Model for Change Detection in Images Acquired by Homogeneous and Heterogeneous Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Multivariate%20Statistical%20Model%20for%20Change%20Detection%20in%20Images%20Acquired%20by%20Homogeneous%20and%20Heterogeneous%20Sensors&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Prendes,%20Jorge&rft.date=2015-03&rft.volume=24&rft.issue=3&rft.spage=799&rft.epage=812&rft.pages=799-812&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2387013&rft_dat=%3Cproquest_RIE%3E1652412709%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652412709&rft_id=info:pmid/25561592&rft_ieee_id=7000593&rfr_iscdi=true |